Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice

نویسندگان

  • Jiang Wei Wu
  • Christoph Preuss
  • Shu Pei Wang
  • Hao Yang
  • Bo Ji
  • Gregory W Carter
  • Rebecca Gladdy
  • Gregor Andelfinger
  • Grant A Mitchell
چکیده

Liposarcoma is an often fatal cancer of fat cells. Mechanisms of liposarcoma development are incompletely understood. The cleavage of fatty acids from acylglycerols (lipolysis) has been implicated in cancer. We generated mice with adipose tissue deficiency of two major enzymes of lipolysis, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), encoded respectively by Pnpla2 and Lipe. Adipocytes from double adipose knockout (DAKO) mice, deficient in both ATGL and HSL, showed near-complete deficiency of lipolysis. All DAKO mice developed liposarcoma between 11 and 14 months of age. No tumors occurred in single knockout or control mice. The transcriptome of DAKO adipose tissue showed marked differences from single knockout and normal controls as early as 3 months. Gpnmb and G0s2 were among the most highly dysregulated genes in premalignant and malignant DAKO adipose tissue, suggesting a potential utility as early markers of the disease. Similar changes of GPNMB and G0S2 expression were present in a human liposarcoma database. These results show that a previously-unknown, fully penetrant epistatic interaction between Pnpla2 and Lipe can cause liposarcoma in mice. DAKO mice provide a promising model for studying early premalignant changes that lead to late-onset malignant disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Analysis of PPARα-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling

PPARalpha is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARalpha in hepatic lipid metabolism, many PPARalpha-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARalpha-regulated genes relevant to lipid metabolism, and to probe for novel ...

متن کامل

Differential transcriptional modulation of biological processes in adipocyte triglyceride lipase and hormone-sensitive lipase-deficient mice.

Adipocyte triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are intracellular lipases that mobilize triglycerides, the main energy source in mammals. Deletion of genes encoding ATGL (Pnpla2) or HSL (Lipe) in mice results in striking phenotypic differences, suggesting distinct roles for these lipases. The goal of the present study was to identify the biological processes that are mod...

متن کامل

Epistatic interaction between two nonstructural loci on chromosomes 7 and 3 influences hepatic lipase activity in BSB mice.

BSB mice exhibit a wide range of obesity despite being produced by a backcross of lean C57BL/6J (B) x lean Mus spretus (SPRET/Pt) F1 animals x B. Previous linkage studies identified a quantitative trait locus (QTL) on mouse chromosome 7 with coincident peaks for hepatic lipase activity, obesity, and plasma cholesterol. However, these mice were not analyzed for gene x gene epistasis. Hepatic lip...

متن کامل

A novel mutation in PNPLA2 leading to neutral lipid storage disease with myopathy.

BACKGROUND Mutations in PNPLA2, a gene encoding adipose triglyceride lipase, lead to neutral lipid storage disease with myopathy. OBJECTIVE To report the clinical and molecular features of a case of neutral lipid storage disease with myopathy resulting from a novel mutation in PNPLA2. DESIGN Case report. SETTING University hospital. PATIENT A 65-year-old man with progressive muscle weak...

متن کامل

Adipocyte lipases and defect of lipolysis in human obesity.

The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017