Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation.
نویسندگان
چکیده
Pasteurella multocida toxin is a major virulence factor of Pasteurella multocida, which causes pasteurellosis in men and animals and atrophic rhinitis in rabbits and pigs. The approximately 145 kDa protein toxin stimulates various signal transduction pathways by activating heterotrimeric G proteins of the Galpha(q), Galpha(i), and Galpha(12/13) families by using an as yet unknown mechanism. Here, we show that Pasteurella multocida toxin deamidates glutamine-205 of Galpha(i2) to glutamic acid. Therefore, the toxin inhibits the intrinsic GTPase activity of Galpha(i) and causes persistent activation of the G protein. A similar modification is also evident for Galpha(q), but not for the closely related Galpha(11), which is not a substrate of Pasteurella multocida toxin. Our data identify the alpha-subunits of heterotrimeric G proteins as the direct molecular target of Pasteurella multocida toxin and indicate that the toxin does not act like a protease, which was suggested from its thiol protease-like catalytic triad, but instead causes constitutive activation of G proteins by deamidase activity.
منابع مشابه
Pasteurella multocida Toxin Activates Various Heterotrimeric G Proteins by Deamidation
Pasteurella multocida produces a 146-kDa protein toxin (Pasteurella multocida toxin, PMT), which stimulates diverse cellular signal transduction pathways by activating heterotrimeric G proteins. PMT deamidates a conserved glutamine residue of the α-subunit of heterotrimeric G proteins that is essential for GTP-hydrolysis, thereby arresting the G protein in the active state. The toxin substrates...
متن کاملModification of Heterotrimeric G-Proteins in Swiss 3T3 Cells Stimulated with Pasteurella multocida Toxin
Many bacterial toxins covalently modify components of eukaryotic signalling pathways in a highly specific manner, and can be used as powerful tools to decipher the function of their molecular target(s). The Pasteurella multocida toxin (PMT) mediates its cellular effects through the activation of members of three of the four heterotrimeric G-protein families, G(q), G(12) and G(i). PMT has been s...
متن کاملSubstrate specificity of Pasteurella multocida toxin for α subunits of heterotrimeric G proteins.
Pasteurella multocida is the causative agent of a number of epizootic and zoonotic diseases. Its major virulence factor associated with atrophic rhinitis in animals and dermonecrosis in bite wounds is P. multocida toxin (PMT). PMT stimulates signal transduction pathways downstream of heterotrimeric G proteins, leading to effects such as mitogenicity, blockade of apoptosis, or inhibition of oste...
متن کاملSelective Membrane Redistribution and Depletion of Gαq-Protein by Pasteurella multocida Toxin
Pasteurella multocida toxin (PMT), the major virulence factor responsible for zoonotic atrophic rhinitis, is a protein deamidase that activates the alpha subunit of heterotrimeric G proteins. Initial activation of G alpha-q-coupled phospholipase C-beta-1 signaling by PMT is followed by uncoupling of G alpha-q-dependent signaling, causing downregulation of downstream calcium and mitogenic signal...
متن کاملNoncanonical G-Protein-Dependent Modulation of Osteoclast Differentiation and Bone Resorption Mediated by Pasteurella multocida Toxin
UNLABELLED Pasteurella multocida toxin (PMT) induces atrophic rhinitis in animals, which is characterized by a degradation of nasal turbinate bones, indicating an effect of the toxin on bone cells such as osteoblasts and osteoclasts. The underlying molecular mechanism of PMT was defined as a persistent activation of heterotrimeric G proteins by deamidation of a specific glutamine residue. Here,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 17 شماره
صفحات -
تاریخ انتشار 2009