Masking by fast gratings.
نویسندگان
چکیده
Perception of an oriented pattern is impaired in the presence of a superimposed orthogonal mask. This masking effect most likely arises in visual cortex, where neuronal responses are suppressed by masks having a broad range of orientations. Response suppression is commonly ascribed to lateral inhibition between cortical neurons. Recent physiological results, however, have cast doubt on this view: powerful suppression has been observed with masks drifting too rapidly to elicit much of a response in cortex. We show here that the same is true for perceptual masking. From contrast discrimination thresholds, we estimated the cortical response to drifting patterns of various frequencies, and found it greatly reduced above 15-20 Hz. In the same subjects, we measured the strength of masking by the same patterns and found it equally strong for masks drifting slowly (2.7 Hz) as for masks drifting rapidly (27-38 Hz). Fast gratings thus cause strong masking while eliciting weak cortical responses. Our results might be explained by inhibition from cortical neurons that respond to unusually high frequencies, and yet do not make their signals fully available for perceptual judgments. A more parsimonious explanation, however, is that masking does not involve lateral inhibition from cortex. Masking might operate in retina or thalamus, which respond to much higher frequencies than cortex. Masking might also be due to thalamic signals to cortex, perhaps through depression at thalamocortical synapses.
منابع مشابه
Temporal Integration of Movement: The Time-Course of Motion Streaks Revealed by Masking
Temporal integration in the visual system causes fast-moving objects to leave oriented 'motion streaks' in their wake, which could be used to facilitate motion direction perception. Temporal integration is thought to occur over ≈100 ms in early cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving ('streaky') and slow-moving fields of dots to...
متن کاملThe spatial tuning of "motion streak" mechanisms revealed by masking and adaptation.
We previously reported that fast-moving dot arrays cause orientation-tuned masking of static gratings (D. Apthorp, J. Cass, & D. Alais, 2010), which we attribute to "motion streaks." Using similar "streaky" dot motion, we describe spatial frequency tuning of grating threshold elevations caused by masking (Experiment 1) and adaptation (Experiment 2) to motion. To compare the streaks with psychop...
متن کاملOrientation tuning of contrast masking caused by motion streaks.
We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at...
متن کاملInteraction between sub- and supra-Nyquist spatial frequencies in peripheral vision
In peripheral vision, high-frequency gratings beyond the Nyquist limit are visible as aliased patterns but, as shown previously, their visibility can be masked by superimposed sub-Nyquist gratings. Is the converse also true? Can supra-Nyquist gratings affect the detectability of sub-Nyquist gratings? In this study, we investigated the masking effect of high contrast, supra-Nyquist components of...
متن کاملSpatial frequency masking in human vision: binocular interactions.
Binocular contrast interactions in human vision were studied psychophysically. Thresholds were obtained for sinewave grating stimulation of the right eye in the presence of simultaneous masking gratings presented to the right eye (monocular masking) or left eye (dichoptic masking). In the first experiment, thresholds were measured at 0.25, 1.0, 4.0, and 16.0 cycle per degree (cpd) as a function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 2 4 شماره
صفحات -
تاریخ انتشار 2002