Unique Peptide Identification of Rnasea Superfamily Sequences Based on Reinforced Merging Algorithms
نویسندگان
چکیده
Human ribonuclease A (RNaseA) superfamily consists of eight RNases with high similarity in which RNase2 and RNase3 share 76.7% identity. The evolutionary variation of RNases results in differential structures and functions of the enzymes. To distinguish the characteristics of each RNase, we developed reinforced merging algorithms (RMA) to rapidly identify the unique peptide motifs for each member of the highly conserved human RNaseA superfamily. Many motifs in RNase3 identified by RMA correlated well with the antigenic regions predicted by DNAStar. Two unique peptide motifs were experimentally confirmed to contain epitopes for monoclonal antibodies (mAbs) specifically against RNase3. Further analysis of homologous RNases in different species revealed that the unique peptide motifs were located at the correspondent positions, and one of these motifs indeed matched the epitope for a specific anti-bovine pancreatic RNaseA (bpRNaseA) antibody. Our method provides a useful tool for identification of unique peptide motifs for further experimental design. The RMA system is available and free for academic use at http://bioinfo.life.nthu.edu.tw/rma/ and http://spider.cs.ntou.edu.tw/bioinformatics/RMA.html.
منابع مشابه
Unique peptide prediction of RNase family sequences based on reinforced merging algorithms
Human ribonuclease A (RNase A) superfamily consists of eight RNases with high sequence homology, in which RNase2 and RNase3 share 78% similarity. The evolutionary variation of RNases results in differential structure and function of the enzymes. To distinguish the characteristics of each RNase, we developed reinforced merging algorithms (RMA) to rapidly predict and identify the unique sequence ...
متن کاملREMUS: a tool for identification of unique peptide segments as epitopes
We provide a 'R(E)MUS' (reinforced merging techniques for unique peptide segments) web server for identification of the locations and compositions of unique peptide segments from a set of protein family sequences. Different levels of uniqueness are determined according to substitutional relationship in the amino acids, frequency of appearance and biological properties such as priority for servi...
متن کاملIn silico identification of epitopes from house cat and dog proteins as peptide immunotherapy candidates based on human leukocyte antigen binding affinity
The objective of this descriptive study was to determine Felis domesticus (cat) and Canis familiaris (dog) protein epitopes that bind strongly to selected HLA class II alleles to identify synthetic vaccine candidate epitopes and to identify individuals/populations who are likely to respond to vaccines. FASTA amino acid sequences of experimentally validated allergenic proteins of house cat and d...
متن کاملProtein Identification Algorithms Developed from Statistical Analysis of MS/MS Fragmentation Patterns
Tandem mass spectrometry is widely used in proteomic studies because of its ability to identify large numbers of peptides from complex mixtures. In a typical LCMS/MS experiment, thousands of tandem mass spectra will be collected and peptide identification algorithms are of great importance to translate them into peptide sequences. Though these spectra contain both m/z and intensity values, most...
متن کاملPhylogeny of gazelles in some islands of Iran based on mtDNA sequences: Species identification and implications for conservation
Different species of gazelles are among the most endangered mammals on the Asian steppes and occur in the central, southern and northwestern regions of Iran. The previous conservation efforts in this region have been incomplete due to confusion about the phylogenetic relationship among various populations. So that, different conservation programs such as ex-situ breeding and transfer of captive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bioinformatics and computational biology
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2006