Lyapunov-Schmidt and Centre Manifold Reduction Methods for Nonlocal PDEs Modelling Animal Aggregations
نویسنده
چکیده
The goal of this paper is to establish the applicability of the Lyapunov-Schmidt reduction and the Centre Manifold Theorem for a class of hyperbolic partial differential equation models with nonlocal interaction terms describing the aggregation dynamics of animals/cells in a one-dimensional domain with periodic boundary conditions. We show the Fredholm property for the linear operator obtained at a steady-state and from this establish the validity of Lyapunov-Schmidt reduction for steady-state bifurcations, Hopf bifurcations and mode interactions of steady-state and Hopf. Next, we show that the hypotheses of the Centre Manifold Theorem of Vanderbauwhede and Iooss [67] hold for any type of local bifurcation near steadystate solutions with SO(2) and O(2) symmetry. To put our results in context, we review applications of hyperbolic partial differential equation models in physics and in biology. Moreover, we also survey recent results on Fredholm properties and Centre Manifold reduction for hyperbolic partial differential equations and equations with nonlocal terms.
منابع مشابه
THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملSPATIOTEMPORAL DYNAMIC OF TOXIN PRODUCING PHYTOPLANKTON (TPP)-ZOOPLANKTON INTERACTION
The present paper deals with a toxin producing phytoplankton (TPP)-zooplankton interaction in spatial environment in thecontext of phytoplankton bloom. In the absence of diffusion the stability of the given system in terms of co-existence and hopf bifurcation has been discussed. After that TPP-zooplankton interaction is considered in spatiotemporal domain by assuming self diffusion in both popu...
متن کاملFredholm properties of nonlocal differential operators via spectral flow
We establish Fredholm properties for a class of nonlocal differential operators. Using mild convergence and localization conditions on the nonlocal terms, we also show how to compute Fredholm indices via a generalized spectral flow, using crossing numbers of generalized spatial eigenvalues. We illustrate possible applications of the results in a nonlinear and a linear setting. We first prove th...
متن کاملEvaluation of the Centre Manifold Method for Limit Cycle Calculations of a Nonlinear Structural Wing
In this study the centre manifold is applied for reduction and limit cycle calculation of a highly nonlinear structural aeroelastic wing. The limit cycle is arisen from structural nonlinearity due to the large deflection of the wing. Results obtained by different orders of centre manifolds are compared with those obtained by time marching method (fourth-order Runge-Kutta method). These comparis...
متن کاملOn nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کامل