Hermite and Gegenbauer polynomials in superspace using Clifford analysis

نویسندگان

  • H. De Bie
  • F. Sommen
چکیده

The Clifford-Hermite and the Clifford-Gegenbauer polynomials of standard Clifford analysis are generalized to the new framework of Clifford analysis in superspace in a merely symbolic way. This means that one does not a priori need an integration theory in superspace. Furthermore a lot of basic properties, such as orthogonality relations, differential equations and recursion formulae are proven. Finally, an interesting physical application of the super Clifford-Hermite polynomials is discussed, thus giving an interpretation to the super-dimension. MSC 2000 : 30G35, 58C50, 42C05 PACS 2006 : 02.30.Fn, 02.30.Gp

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 5 . 19 18 v 1 [ m at h . C A ] 1 3 M ay 2 00 8 Fourier transform and related integral transforms in superspace

In this paper extensions of the classical Fourier, fractional Fourier and Radon transforms to superspace are studied. Previously, a Fourier transform in superspace was already studied, but with a different kernel. In this work, the fermionic part of the Fourier kernel has a natural symplectic structure, derived using a Clifford analysis approach. Several basic properties of these three transfor...

متن کامل

Orthogonal Polynomials and Sharp Strichartz Estimates

Orthogonal polynomials have been used to produce sharp estimates in Harmonic Analysis in several instances. The first most notorious and original use was in Beckner’s thesis [1], where he proved the sharp Hausdorff-Young inequality using Hermite polynomial expansions. More recently, Foschi [4] used spherical harmonics and Gegenbauer polynomials in his proof of the sharp Tomas-Stein adjoint Four...

متن کامل

A new Extension of Gegenbauer Matrix Polynomials and Their Properties

The aim of this paper is to define and study of the Gegenbauer matrix polynomials of two variables. An explicit representation, a three-term matrix recurrence relations, differential recurrence relations and hypergeometric matrix representation for the Gegenbauer matrix polynomials of two variables are given. The Gegenbauer matrix polynomials are solutions of the matrix differential equations a...

متن کامل

Formulas for the Fourier Series of Orthogonal Polynomials in Terms of Special Functions

—An explicit formula for the Fourier coef cients of the Legendre polynomials can be found in the Bateman Manuscript Project. However, formulas for more general classes of orthogonal polynomials do not appear to have been worked out. Here we derive explicit formulas for the Fourier series of Gegenbauer, Jacobi, Laguerre and Hermite polynomials. The methods described here apply in principle to an...

متن کامل

On the hydrogen wave function in Momentum-space, Clifford algebra and the Generating function of Gegenbauer polynomial

Using the quadratic transformation and the generating function method we 3 4 R R → perform the Fourier transformation of the wave function of coordinates of hydrogen atom and we find the analytic expression of the wave function in momentum space. We derive the matrix elements between the basis to 4-dimensions and integral representation of the generating functions of Gegenbauer polynomials. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008