Simulation study in Probabilistic Boolean Network models for genetic regulatory networks
نویسندگان
چکیده
Probabilistic Boolean Network (PBN) is widely used to model genetic regulatory networks. Evolution of the PBN is according to the transition probability matrix. Steady-state (long-run behaviour) analysis is a key aspect in studying the dynamics of genetic regulatory networks. In this paper, an efficient method to construct the sparse transition probability matrix is proposed, and the power method based on the sparse matrix-vector multiplication is applied to compute the steady-state probability distribution. Such methods provide a tool for us to study the sensitivity of the steady-state distribution to the influence of input genes, gene connections and Boolean networks. Simulation results based on a real network are given to illustrate the method and to demonstrate the steady-state analysis.
منابع مشابه
Probabilistic Boolean Networks - The Modeling and Control of Gene Regulatory Networks
probabilistic boolean networks the modeling and control of probabilistic boolean networks the modeling and control of probabilistic boolean networks: the modeling and control probabilistic boolean networks society for industrial probabilistic boolean networks the modeling and control of probabilistic control of boolean networks with multiple from boolean to probabilistic boolean networks as mod...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملInferring gene regulatory networks from time series data using the minimum description length principle
MOTIVATION A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models represented by dynamic Bayesian networks...
متن کاملControl of Stationary Behavior in Probabilistic Boolean Networks by Means of Structural Intervention
Probabilistic Boolean Networks (PBNs) were recently introduced as models of gene regulatory networks. The dynamical behavior of PBNs, which are probabilistic generalizations of Boolean networks, can be studied using Markov chain theory. In particular, the steady-state or long-run behavior of PBNs may reflect the phenotype or functional state of the cell. Approaches to alter the steady-state beh...
متن کاملA Tutorial on Analysis and Simulation of Boolean Gene Regulatory Network Models
Driven by the desire to understand genomic functions through the interactions among genes and gene products, the research in gene regulatory networks has become a heated area in genomic signal processing. Among the most studied mathematical models are Boolean networks and probabilistic Boolean networks, which are rule-based dynamic systems. This tutorial provides an introduction to the essentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of data mining and bioinformatics
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2007