Existence globale de solutions d’énergie infinie de l’équation de Navier-Stokes 2D
نویسنده
چکیده
We study in this article the solutions of the Navier-Stokes equations, with an initial data in ∂BMO. For u|t=0 in the closure of the Schwartz class, we obtain the existence and uniqueness of a global solution, and an estimate on its norm in ∂BMO.
منابع مشابه
Existence and Uniqueness of Optimal Control to the Navier-Stokes Equations
In this note we establish the existence and uniqueness of solutions for optimal control problems for the 2D Navier-Stokes equations in a 2D-channel. Our approach is based on infinite-dimensional optimization ; the cost functional is shown to be strictly convex. Generalization to other control problems as well as a gradient algorithm are presented. Existence et unicité du contrôle optimal des éq...
متن کاملVortex helices for the Gross-Pitaevskii equation
We prove the existence of travelling vortex helices to the Gross-Pitaevskii equation in R. These solutions have an infinite energy, are periodic in the direction of the axis of the helix and have a degree one at infinity in the orthogonal direction. Résumé : Nous prouvons l’existence d’ondes progressives à vorticité sur une hélice pour l’équation de GrossPitaevskii dans R. Ces solutions sont d’...
متن کاملGlobal well posedness for the Maxwell–Navier–Stokes system in 2D
We prove global existence of regular solutions to the full MHD system (or more precisely the Maxwell–Navier–Stokes system) in 2D. We also provide an exponential growth estimate for the Hs norm of the solution when the time goes to infinity. © 2009 Elsevier Masson SAS. All rights reserved. Résumé Nous montrons l’existence globale de solutions régulières pour le système complet de la MHD (plus pr...
متن کاملA coupled chemotaxis-fluid model: Global existence
We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis–Navier–Stokes system in two space dimensions, we obtain global existence for large data. In three space di...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004