Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG
نویسندگان
چکیده
The present study aims to gain insights into the effects of training with a motor imagery (MI)-based brain-computer interface (BCI) on activation patterns of the sensorimotor cortex. We used functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to investigate long-term training effects across 10 sessions using a 2-class (right hand and feet) MI-based BCI in fifteen subjects. In the course of the training a significant enhancement of activation pattern emerges, represented by an [oxy-Hb] increase in fNIRS and a stronger event-related desynchronization in the upper β-frequency band in the EEG. These effects were only visible in participants with relatively low BCI performance (mean accuracy ≤ 70%). We found that training with an MI-based BCI affects cortical activation patterns especially in users with low BCI performance. Our results may serve as a valuable contribution to the field of BCI research and provide information about the effects that training with an MI-based BCI has on cortical activation patterns. This might be useful for clinical applications of BCI which aim at promoting and guiding neuroplasticity.
منابع مشابه
Classification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملA Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملCortical effects of BCI training measured with fNIRS
This study investigates the cortical training effects using a 2-class motor imagery (MI) based BCI. Twelve subjects were trained to use right hand or feet MI to control a cursor on a screen. The feedback was calculated by using features based on the EEG. To assess which areas are involved in the training, and how activity in these areas changes over time, three fNIRS measurements were applied b...
متن کاملRobot control system using SMR signals detection
One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 85 Pt 1 شماره
صفحات -
تاریخ انتشار 2014