Chemotaxis of Dictyostelium discoideum: Collective Oscillation of Cellular Contacts

نویسندگان

  • Edith Schäfer
  • Marco Tarantola
  • Elena Polo
  • Christian Westendorf
  • Noriko Oikawa
  • Eberhard Bodenschatz
  • Burkhard Geil
  • Andreas Janshoff
چکیده

Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective behavior of Dictyostelium discoideum monitored by impedance analysis

Dictyostelium discoideum cells respond to periodic signals of extracellular cAMP by collective changes of cell-cell and cell-substrate contacts. This was confirmed by dielectric analysis employing electric cell-substrate impedance sensing (ECIS) and impedance measurements involving cell-filled micro channels in conjunction with optical microscopy providing a comprehensive picture of chemotaxis ...

متن کامل

Dictyostelium discoideum: cellular self-organization in an excitable biological medium.

The dynamics which govern the establishment of pattern and form in multicellular organisms remain a key problem of developmental biology. We study this question in the case of morphogenesis during aggregation of the slime mould Dictyostelium discoideum. Here detailed experimental information allows the formulation of a mechanistic model in which the central element is the coupling of the previo...

متن کامل

Migration and thermotaxis of dictyostelium discoideum slugs, a model study

Dictyostelium discoideum slugs show a pronounced thermotaxis. We have modelled the motion of the D. discoideum slug in the absence and in the presence of a thermal gradient. Our model is an extension of the hybrid cellular automata/partial differential equation model, as formulated by Savill and Hogeweg [J. theor. Biol., (1997) 184, 229-235]. The modelled slugs maintain their shape and crawl, w...

متن کامل

Periodic stimuli are more successful than randomly spaced ones for inducing development in Dictyostelium discoideum.

Aggregation in the cellular slime mold Dictyostelium discoideum is due to chemotaxis. The chemoattractant, cyclic AMP, is synthesised and released periodically by the cells. Externally applied periodic pulses of cyclic AMP can also induce differentiation in this organism. The present work examines the role of periodicity per se in cyclic AMP-mediated stimulation of cell differentiation. For thi...

متن کامل

A critical-like collective state leads to long-range cell communication in Dictyostelium discoideum aggregation

The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient, short-range chemical gradients ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013