Polar Polytopes and Recovery of Sparse Representations

نویسنده

  • Mark D. Plumbley
چکیده

Suppose we have a signal y which we wish to represent using a linear combination of a number of basis atoms ai, y = ∑ i xiai = Ax. The problem of finding the minimum l0 norm representation for y is a hard problem. The Basis Pursuit (BP) approach proposes to find the minimum l1 norm representation instead, which corresponds to a linear program (LP) that can be solved using modern LP techniques, and several recent authors have given conditions for the BP (minimum l1 norm) and sparse (minimum l0 solutions) representations to be identical. In this paper, we explore this sparse representation problem using the geometry of convex polytopes, as recently introduced into the field by Donoho. By considering the dual LP we find that the so-called polar polytope P ∗ of the centrally-symmetric polytope P whose vertices are the atom pairs ±ai is particularly helpful in providing us with geometrical insight into optimality conditions given by Fuchs and Tropp for non-unit-norm atom sets. In exploring this geometry we are able to tighten some of these earlier results, showing for example that the Fuchs condition is both necessary and sufficient for l1-uniqueoptimality, and that there are situations where Orthogonal Matching Pursuit (OMP) can eventually find all l1-unique-optimal solutions with m nonzeros even if ERC fails for m, if allowed to run for more than m steps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Theorem 10 in “On Polar Polytopes and the Recovery of Sparse Representations”

It is shown that Theorem 10 (Non-Nestedness of ERC) in [Plumbley, IEEE Trans. Info. Theory, vol. 53, pp. 3188, Sep. 2007] neglects the derivations of the exact recovery conditions (ERCs) of constrained `1-minimization (BP) and orthogonal matching pursuit (OMP). This means that it does not reflect the recovery properties of these algorithms. Furthermore, an ERC of BP more general than that in [T...

متن کامل

On Theorem 10 in "On Polar Polytopes and the Recovery of Sparse Representations" [Sep 07 3188-3195]

It is shown that Theorem 10 (Non-Nestedness of ERC) in [Plumbley, IEEE Trans. Info. Theory, vol. 53, pp. 3188, Sep. 2007] neglects the derivations of the exact recovery conditions (ERCs) of constrained �1-minimization (BP) and orthogonal matching pursuit (OMP). This means that it does not reflect the recovery properties of these algorithms. Furthermore, an ERC of BP more general than that in [T...

متن کامل

Recovering non-negative and combined sparse representations

The non-negative solution to an underdetermined linear system can be uniquely recovered sometimes, even without imposing any additional sparsity constraints. In this paper, we derive conditions under which a unique non-negative solution for such a system can exist, based on the theory of polytopes. Furthermore, we develop the paradigm of combined sparse representations, where only a part of the...

متن کامل

Shrinkage and Variable Selection by Polytopes

Constrained estimators that enforce variable selection and grouping of highly correlated data have been shown to be successful in finding sparse representations and obtaining good performance in prediction. We consider polytopes as a general class of compact and convex constraint regions. Well established procedures like LASSO (Tibshirani, 1996) or OSCAR (Bondell and Reich, 2008) are shown to b...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0510032  شماره 

صفحات  -

تاریخ انتشار 2005