A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration.
نویسندگان
چکیده
A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is approximately 350 kHz at 1550 nm. The comb frequency uncertainty is bounded by +/-30 kHz (corresponding to a radial velocity of +/-5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.
منابع مشابه
Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb.
We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a ra...
متن کاملHigh-precision wavelength calibration of astronomical spectrographs with laser frequency combs
We describe a possible new technique for precise wavelength calibration of high-resolution astronomical spectrographs using femtosecond-pulsed mode-locked lasers controlled by stable oscillators such as atomic clocks. Such ‘frequency combs’ provide a series of narrow modes which are uniformly spaced according to the laser’s pulse repetition rate and whose absolute frequencies are known a priori...
متن کاملCalibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb.
We deployed two wavelength calibrators based on laser frequency combs ("astro-combs") at an astronomical telescope. One astro-comb operated over a 100 nm band in the deep red (∼ 800 nm) and a second operated over a 20 nm band in the blue (∼ 400 nm). We used these red and blue astro-combs to calibrate a high-resolution astrophysical spectrograph integrated with a 1.5 m telescope, and demonstrate...
متن کاملHigh-precision wavelength calibration with laser frequency combs
We describe a possible new technique for precise wavelength calibration of high-resolution astronomical spectrographs using femtosecond-pulsed mode-locked lasers controlled by stable oscillators such as atomic clocks. Such ‘frequency combs’ provide a series of narrow modes which are uniformly spaced according to the laser’s pulse repetition rate and whose absolute frequencies are known a priori...
متن کاملThe evolving optical frequency comb [Invited]
In the past decade we have witnessed remarkable advances associated with the frequency stabilization of the comb present in the output of a mode-locked femtosecond laser. While proving itself to be fantastically successful in its role as the “gears” of optical atomic clocks, the optical frequency comb has further evolved into a valuable tool for a wide range of applications, including ultraviol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 81 6 شماره
صفحات -
تاریخ انتشار 2010