Dynamic coding of taste stimuli in the brainstem: effects of brief pulses of taste stimuli on subsequent taste responses.
نویسندگان
چکیده
Recent studies have suggested that the response profiles of taste-responsive cells in the brainstem may be modulated by inhibitory interactions, potentially originating from activity in peripheral taste nerves. This idea was explored by testing the hypothesis that brief (100 msec) pulses of taste stimuli would alter the responses to subsequently presented tastants in the nucleus of the solitary tract (NTS) of urethane-anesthetized rats. Pulses of taste stimuli, called prepulses, were followed by a 3 sec presentation of the same or different taste stimulus. The prepulse-stimulus interval was either 1 or 5 sec, during which the tongue was rinsed with distilled water. Taste stimuli consisted of 0.1 m NaCl, 0.5 m sucrose, 0.01 m quinine HCl, and 0.01 m HCl. Taste prepulses suppressed (or enhanced) subsequent taste responses in 30 of 49 (61%) units when the prepulse-stimulus interval was 1 sec but were ineffective when this interval was 5 sec. Most commonly, NaCl or HCl prepulses attenuated the response to quinine. Control experiments showed that these effects were not attributable to adaptation, mixture effects, or response variability. In 19 (39%) of the units tested, effects of prepulses were large enough to change the order of effectiveness of the taste stimuli. Taste responses in these cells were "dynamically tuned" in that the magnitude of response was a function of the taste stimulus that immediately preceded it. Dynamic tuning may be the result of inhibitory interactions within the NTS; cells that show dynamic tuning may have a unique function in taste coding.
منابع مشابه
Taste coding of complex naturalistic taste stimuli and traditional taste stimuli in the parabrachial pons of the awake, freely licking rat.
Several studies have shown that taste-responsive cells in the brainstem taste nuclei of rodents respond to sensory qualities other than gustation. Such data suggest that cells in the classical gustatory brainstem may be better tuned to respond to stimuli that engage multiple sensory modalities than to stimuli that are purely gustatory. Here, we test this idea by recording the electrophysiologic...
متن کاملPii: S0031-9384(00)00191-8
In the study of the neural code for taste, two theories have dominated the literature: the across neuron pattern (ANP), and the labeled line theories. Both of these theories are based on the observations that taste cells are multisensitive across a variety of different taste stimuli. Given a fixed array of taste stimuli, a cell’s particular set of sensitivities defines its response profile. The...
متن کاملAmygdalofugal influence on processing of taste information in the nucleus of the solitary tract of the rat.
Previous studies have shown that corticofugal input to the first central synapse of the ascending gustatory system, the nucleus of the solitary tract (NST), can alter the way taste information is processed. Activity in other forebrain structures, such as the central nucleus of the amygdala (CeA), similarly influence activation of NST taste cells, although the effects of amygdalofugal input on n...
متن کاملTaste response variability and temporal coding in the nucleus of the solitary tract of the rat.
Theories of taste coding in the brain stem have been based on the idea that taste responses are integrated over time without regard to the temporal structure of the taste-evoked spike train. In the present experiment, the reliability of response rate across stimulus repetitions and the potential contribution of temporal coding to the discrimination of taste stimuli was examined. Taste stimuli r...
متن کاملInhibitory responses of parabrachial neurons evoked by taste stimuli in rat.
In the present study, the responses of inhibitory gustatory neurons in the parabrachial nucleus (PBN) to four basic taste stimuli NaCl, HCl, quinine HCl (QHCl) and sucrose were examined using single-unit recording technique in anesthetized rats. A total of 18 inhibitory taste neurons in the PBN were obtained. Spontaneous firing rates of these inhibitory neurons were 0.2-5.5 Hz with mean firing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 26 شماره
صفحات -
تاریخ انتشار 2003