On backward errors of structured polynomial eigenproblems solved by structure preserving linearizations
نویسندگان
چکیده
First, we derive explicit computable expressions of structured backward errors of approximate eigenelements of structured matrix polynomials including symmetric, skew-symmetric, Hermitian, skew-Hermitian, even and odd polynomials. We also determine minimal structured perturbations for which approximate eigenelements are exact eigenelements of the perturbed polynomials. Next, we analyze the effect of structure preserving linearizations of structured matrix polynomials on the structured backward errors of approximate eigenelements. We identify structure preserving linearizations which have almost no adverse effect on the structured backward errors of approximate eigenelements of the polynomials. Finally, we analyze structured pseudospectra of a structured matrix polynomial and establish a partial equality between unstructured and structured pseudospectra.
منابع مشابه
Structured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems
We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...
متن کاملBackward errors and linearizations for palindromic matrix polynomials
We derive computable expressions of structured backward errors of approximate eigenelements of ∗-palindromic and ∗-anti-palindromic matrix polynomials. We also characterize minimal structured perturbations such that approximate eigenelements are exact eigenelements of the perturbed polynomials. We detect structure preserving linearizations which have almost no adverse effect on the structured b...
متن کاملStructured Polynomial Eigenproblems Related to Time-delay Systems
A new class of structured polynomial eigenproblems arising in the stability analysis of time-delay systems is identified and analyzed together with new types of closely related structured polynomials. Relationships between these polynomials are established via the Cayley transformation. Their spectral symmetries are revealed, and structure-preserving linearizations constructed. A structured Sch...
متن کاملBackward Error of Polynomial Eigenproblems Solved by Linearization
The most widely used approach for solving the polynomial eigenvalue problem P (λ)x = (∑m i=0 λ Ai ) x = 0 in n × n matrices Ai is to linearize to produce a larger order pencil L(λ) = λX + Y , whose eigensystem is then found by any method for generalized eigenproblems. For a given polynomial P , infinitely many linearizations L exist and approximate eigenpairs of P computed via linearization can...
متن کاملBackward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization
One of the most frequently used techniques to solve polynomial eigenvalue problems is linearization, in which the polynomial eigenvalue problem is turned into an equivalent linear eigenvalue problem with the same eigenvalues, and with easily recoverable eigenvectors. The eigenvalues and eigenvectors of the linearization are usually computed using a backward stable solver such as the QZ algorith...
متن کامل