Inhibitory interneuron classes express complementary AMPA-receptor patterns in macaque primary visual cortex.
نویسندگان
چکیده
Glutamate receptors mediate excitatory neurotransmission. A very prevalent type of glutamate receptor in the neocortex is the AMPA receptor (AMPAR). AMPARs mediate fast synaptic transmission and their functionality depends on the subunit composition. In primary visual cortex (area V1), the density and subunit composition of AMPARs differ among cortical layers and among cell types. The AMPARs expressed by the different types of inhibitory interneurons, which are crucial for network function, have not yet been characterized systematically. We investigated the distribution of AMPAR subunits in macaque V1 for three distinct subpopulations of inhibitory interneurons: parvalbumin-immunoreactive (PV-IR) interneurons, calbindin-immunoreactive (CB-IR) interneurons, and calretinin-immunoreactive (CR-IR) interneurons. We found that PV-IR cells, which have previously been identified as fast spiking, show high expression of the GluA2 and GluA3 subunits. In contrast, CB-IR and CR-IR cells, which tend to be intermediate spiking, show high expression of the GluA1 and GluA4 subunits. Thus, our data demonstrate that the expression of AMPARs divides inhibitory interneurons in macaque V1 into two categories that are compatible with existing classification methods based on calcium-binding proteins and firing behavior. Moreover, our findings suggest new approaches to target the different inhibitory interneuron classes pharmacologically in vivo.
منابع مشابه
Chapter III Inhibitory interneuron classes express complementary AMPA - receptor patterns in macaque primary visual cortex
Glutamate receptors mediate excitatory neurotransmission. A very prevalent type of glutamate receptor in the neocortex is the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptor. AMPA receptors (AMPARs) mediate fast synaptic transmission and their functionality depends on the subunit composition. In primary visual cortex (area V1), the density and subunit composition of AMPARs dif...
متن کاملMuscarinic acetylcholine receptors are expressed by most parvalbumin-immunoreactive neurons in area MT of the macaque
BACKGROUND In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulati...
متن کاملImmunocytochemical characterization of AMPA-selective glutamate receptor subunits: laminar and compartmental distribution in macaque striate cortex.
Subunit proteins that comprise functional AMPA receptors were localized by immunocytochemical methods in the adult macaque primary visual cortex (V1). GluR1, GluR2/3/4c, and GluR4 immunoreactivity consisted of rich plexuses of punctate profiles scattered throughout the neuropil, in radial arrays, and outlining the membrane of somata and proximal dendrites. Cytoplasmic immunoreactivity was limit...
متن کاملInfluence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex.
Inhibition modulates receptive field properties and integrative responses of neurons in cortical circuits. The contribution of specific interneuron classes to cortical circuits and emergent responses is unknown. Here, we examined neuronal responses in primary visual cortex (V1) of adult Dlx1(-/-) mice, which have a selective reduction in cortical dendrite-targeting interneurons (DTIs) that expr...
متن کاملتاثیر محرومیت از بینایی طی دوره بحرانی تکامل مغز بر بیان زیرواحدهای گیرنده AMPA در هیپوکامپ موش صحرایی
Background: Environmental signals have an essential role in the maturation of neural circuits during critical period of brain development. It has been shown that, change in visual signals during critical period of brain development changes structure and function of glutamate receptors in the visual cortex. After processing in visual cortex, part of visual signals goes to the hippocampus and mak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 18 شماره
صفحات -
تاریخ انتشار 2014