Inhibition of sarcoplasmic reticulum Ca2+-ATPase by miconazole.
نویسندگان
چکیده
The inhibition of sarcoplasmic reticulum Ca2+-ATPase activity by miconazole was dependent on the concentration of ATP and membrane protein. Half-maximal inhibition was observed at 12 microM miconazole when the ATP concentration was 50 microM and the membrane protein was 0.05 mg/ml. When ATP was 1 mM, a low micromolar concentration of miconazole activated the enzyme, whereas higher concentrations inhibited it. A qualitatively similar response was observed when Ca2+ transport was measured. Likewise, the half-maximal inhibition value was higher when the membrane concentration was raised. Phosphorylation studies carried out after sample preequilibration in different experimental settings shed light on key partial reactions such as Ca2+ binding and ATP phosphorylation. The miconazole effect on Ca2+-ATPase activity can be attributed to stabilization of the Ca2+-free enzyme conformation giving rise to a decrease in the rate of the Ca2+ binding transition. The phosphoryl transfer reaction was not affected by miconazole.
منابع مشابه
Inhibition of sarcoplasmic reticulum Ca -ATPase by miconazole
Lax, Antonio, Fernando Soler, and Francisco Fernandez-Belda. Inhibition of sarcoplasmic reticulum Ca2 ATPase by miconazole. Am J Physiol Cell Physiol 283: C85–C92, 2002. First published February 20, 2002; 10.1152/ ajpcell.00580.2001.—The inhibition of sarcoplasmic reticulum Ca2 -ATPase activity by miconazole was dependent on the concentration of ATP and membrane protein. Half-maximal inhibition...
متن کاملInhibitory effect of lidocaine on the sarcoplasmic reticulum Ca2+-dependent atpase from temporalis muscle.
Myotoxic effects of local anesthetics on skeletal musclefibers involve the inhibition ofsarcoplasmic reticulum Ca2+ -dependent ATPase activity and Ca2 transport. Lidocaine is a local anesthetic frequently used to relieve the symptoms of trigeminal neuralgia. The aim of this work was to test the inhibitory and/or stimulatory effect of lidocaine on sarcoplasmic reticulum Ca2+ -dependent ATPase is...
متن کاملCyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum.
The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/m...
متن کاملUncoupling of Ca2+ Transport in Sarcoplasmic Reticulum as a Result of Labeling Lipid Amino Groups and Inhibition of Ca2+-ATPase Activity by Modification
Limited labeling of amino groups with fluorescarnine in fragmented sarcoplasmic reticulum vesicles inhibits Ca2+-ATPase activity and Ca2+ transport. Under the labeling conditions used, 80% of the label reacts with phosphatidylethanolamine and 20% with the CaZ+-ATPase polypeptide. This degree of labeling does not result in vesicular disruption or in loss of vesicular proteins and does not increa...
متن کاملEffect of chemical modification on the crystallization of Ca2+-ATPase in sarcoplasmic reticulum.
The influence of chemical modification on the morphology of crystalline ATPase aggregates was analyzed in sarcoplasmic reticulum (SR) vesicles. The Ca2+-ATPase forms monomer-type (P1) type crystals in the E1 and dimer-type (P2) crystals in the E2 conformation. The P1 type crystals are induced by Ca2+ or lanthanides; P2 type crystals are observed in Ca2+-free media in the presence of vanadate or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 283 1 شماره
صفحات -
تاریخ انتشار 2002