Parabolic Kazhdan-lusztig Polynomials for Hermitian Symmetric Pairs
نویسنده
چکیده
We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of q, and that they are combinatorial invariants.
منابع مشابه
Littlewood-richardson Coeecients and Kazhdan-lusztig Polynomials
We show that the Littlewood-Richardson coeecients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for aane symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in 21] in terms of ribbon tableaux.
متن کاملKazhdan-lusztig and R-polynomials, Young’s Lattice, and Dyck Partitions
We give explicit combinatorial product formulas for the maximal parabolic Kazhdan-Lusztig and R-polynomials of the symmetric group. These formulas imply that these polynomials are combinatorial invariants, and that the KazhdanLusztig ones are nonnegative. The combinatorial formulas are most naturally stated in terms of Young’s lattice, and the one for the Kazhdan-Lusztig polynomials depends on ...
متن کاملLittlewood-Richardson coefficients and Kazhdan-Lusztig polynomials
We show that the Littlewood-Richardson coefficients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for affine symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in [21] in terms of ribbon tableaux.
متن کاملKazhdan-lusztig Polynomials for Hermitian Symmetric Spaces
A nonrecursive scheme is presented to compute the KazhdanLusztig polynomials associated to a classical Hermitian symmetric space, extending a result of Lascoux-Schutzenberger for grassmannians. The polynomials for the exceptional Hermitian domains are also tabulated. All the KazhdanLusztig polynomials considered are shown to be monic.
متن کاملBrundan-kazhdan-lusztig and Super Duality Conjectures
We formulate a general super duality conjecture on connections between parabolic categories O of modules over Lie superalgebras and Lie algebras of type A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was initiated by Brundan. We show that the Brundan-Kazhdan-Lusztig (BKL) polynomials for gl(m|n) in our parabolic setup can be identified with the usual parabolic Kazhda...
متن کامل