On Semilocal Convergence of Inexact Newton

نویسندگان

  • Xueping Guo
  • X. P. GUO
چکیده

Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative method for solving the Newton equations is specified to be the splitting method, we get two estimates about the iteration steps for the special inexact Newton methods. Mathematics subject classification: 65H10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Semilocal Convergence of Inexact Newton Methods

Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...

متن کامل

Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equations

Newton-HSS methods, that are variants of inexact Newton methods different from Newton-Krylov methods, have been shown to be competitive methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices [Bai and Guo, 2010]. In that paper, only local convergence was proved. In this paper, we prove a Kantorovich-type semilocal convergence. Then we introduce N...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

A semilocal convergence analysis of an inexact Newton method using recurrent relations

We extend the applicability of an inexact Newton method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The recurrent relations method is used to prove the existence-convergence theorem. Our error bounds are tighter and the information on the location of the solution at least as precise under the same information as before. Our results compar...

متن کامل

On the semilocal convergence of a fast two-step Newton method Convergencia semilocal de un método de Newton de dos pasos

Abstract. We provide a semilocal convergence analysis for a cubically convergent two-step Newton method (2) recently introduced by H. Homeier [8], [9], and also studied by A. Özban [13]. In contrast to the above works we examine the semilocal convergence of the method in a Banach space setting, instead of the local in the real or complex number case. A comparison is given with a two step Newton...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007