A Diabatic Surface Hopping Algorithm Based on Time Dependent Perturbation Theory and Semiclassical Analysis
نویسندگان
چکیده
Surface hopping algorithms are popular tools to study dynamics of the quantum-classical mixed systems. In this paper, we propose a surface hopping algorithm in diabatic representations, based on time dependent perturbation theory and semiclassical analysis. The algorithm can be viewed as a Monte Carlo sampling algorithm on the semiclassical path space for piecewise deterministic path with stochastic jumps between the energy surfaces. The algorithm is validated numerically and it shows good performance in both weak coupling and avoided crossing regimes.
منابع مشابه
Photochemistry of DNA fragments via semiclassical nonadiabatic dynamics.
Forming upon absorption of a UV photon, excited states of DNA are subject to nonadiabatic evolution, via either internal conversion (IC) back to the ground state or mutagenesis. Nonadiabatic processes following the formation of the first singlet excited states, S1, in 10 different small DNA fragments--4 single 4'H-nucleosides, 2 Watson-Crick base pairs, and 4 nucleotide quartets--have been inve...
متن کاملDirect ab initio dynamics studies of vibrational-state selected reaction rate of the OH1H2 ̃H1H2O reaction
We present direct ab initio dynamics studies of vibrational-state selected reaction rates of the OH1H2→H1H2O reaction. Rate constants for both the OH1H2~v51! and OH~v51!1H2 reactions were calculated based on a full variational transition state theory plus multidimensional semiclassical tunneling approximations within a statistical diabatic model. The potential energy surface information was cal...
متن کاملIntramolecular electron transfer in bis(methylene) adamantyl radical cation: a case study of diabatic trapping.
Our characterization of the potential energy surface for electron transfer (ET) in the bis(methylene)adamantane (BMA) model radical cation shows that the surface topology is prone to diabatic trapping (competition between ET and upward hops to the excited state). The general conditions for this phenomenon have been derived. The surface is centered around a conical intersection, and diabatic tra...
متن کاملCommunication: Standard surface hopping predicts incorrect scaling for Marcus' golden-rule rate: the decoherence problem cannot be ignored.
We evaluate the accuracy of Tully's surface hopping algorithm for the spin-boson model for the case of a small diabatic coupling parameter (V). We calculate the transition rates between diabatic surfaces, and we compare our results to the expected Marcus rates. We show that standard surface hopping yields an incorrect scaling with diabatic coupling (linear in V), which we demonstrate is due to ...
متن کاملHow to recover Marcus theory with fewest switches surface hopping: add just a touch of decoherence.
We present a slightly improved version of our augmented fewest switches surface hopping (A-FSSH) algorithm and apply it to the calculation of transition rates between diabatic electronic states within the spin-boson model. We compare A-FSSH rates with (i) Marcus rates from the golden rule, (ii) Tully-style FSSH rates, and (iii) FSSH rates using a simple, intuitive decoherence criterion. We show...
متن کامل