Classifications of Motor Imagery Tasks in Brain Computer Interface Using Linear Discriminant Analysis
نویسندگان
چکیده
In this paper, we address a method for motor imagery feature extraction for brain computer interface (BCI). The wavelet coefficients were used to extract the features from the motor imagery EEG and the linear discriminant analysis was utilized to classify the pattern of left or right hand imagery movement and rest. The performance of the proposed method was evaluated using EEG data recorded by us, with 8 g.tec active electrodes by means of g.MOBIlab+ module. The maximum accuracy of classification is 91%. Keywords— Brain computer interface; motor imagery; wavelet; linear discriminant analysis
منابع مشابه
A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملDetection and Classification of Mu Rhythm using Phase Synchronization for a Brain Computer Interface
Phase synchronization in a brain computer interface based on Mu rhythm is evaluated by means of phase lag index and weighted phase lag index. In order to detect and classify the important features reflected in brain signals during execution of mental tasks (imagination of left and right hand movement), the proposed methods are implemented on two datasets. The classification is performed using l...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کامل