Analysis of a deformable fracture in permeable material

نویسندگان

  • Lawrence C. Murdoch
  • Leonid N. Germanovich
چکیده

The response of deformable fractures to changes in fluid pressure controls phenomena ranging from the flow of fluids near wells to the propagation of hydraulic fractures. We developed an analysis designed to simulate fluid flows in the vicinity of asperity-supported fractures at rest, or fully open fractures that might be propagating. Transitions between at-rest and propagating fractures can also be simulated. This is accomplished by defining contact aperture as the aperture when asperities on a closing fracture first make contact. Locations on a fracture where the aperture is less than the contact aperture are loaded by both fluid pressure and effective stress, whereas locations where the aperture exceeds the contact aperture are loaded only by fluid pressure. Fluid pressure and effective stress on the fracture are determined as functions of time by solving equations of continuity in the fracture and matrix, and by matching the global displacements of the fracture walls to the local deformation of asperities. The resulting analysis is implemented in a numerical code that can simulate well tests or hydraulic fracturing operations. Aperture changes during hydraulic well tests can be measured in the field, and the results predicted using this analysis are similar to field observations. The hydraulic fracturing process can be simulated from the inflation of a pre-existing crack, to the propagation of a fracture, and the closure of the fracture to rest on asperities or proppant. Two-dimensional, multi-phase fluid flow in the matrix is included to provide details that are obscured by simplifications of the leakoff process (Carter-type assumptions) used in many hydraulic fracture models. Execution times are relatively short, so it is practical to implement this code with parameter estimation algorithms to facilitate interpretation of field data. Copyright # 2006 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deflection of a hyperbolic shear deformable microbeam under a concentrated load

Deflection analysis of a simply supported microbeam subjected to a concentrated load at the middle is investigated on the basis of a shear deformable beam theory and non-classical theory. Effects of shear deformation and small size are taken into consideration by hyperbolic shear deformable beam theory and modified strain gradient theory, respectively. The governing differential equations and c...

متن کامل

Behavior of a hydraulic fracture in permeable formations

The permeability and coupled behavior of pore pressure and deformations play an important role in hydraulic fracturing (HF) modeling. In this work, a poroelastic displacement discontinuity method is used to study the permeability effect on the HF development in various formation permeabilities. The numerical method is verified by the existing analytical and experimental data. Then the propagati...

متن کامل

On Analysis of Stress Concentration in Curvilinear Anisotropic Deformable Continuum Bodies

In cylindrical continua, hoop stresses are induced due to the circumferential failure. This mainly happens when the cylinder is subjected to mechanical loads which vary in the circumferential directions. On the other hand, radial stress is stress in the direction of or opposite to the central axis of a cylindrical body. In the present study, the influence of curvilinear anisotropy on the radial...

متن کامل

Failing softly: a fracture theory of highly-deformable materials.

Highly-deformable materials, from synthetic hydrogels to biological tissues, are becoming increasingly important from both fundamental and practical perspectives. Their mechanical behaviors, in particular the dynamics of crack propagation during failure, are not yet fully understood. Here we propose a theoretical framework for the dynamic fracture of highly-deformable materials, in which the ef...

متن کامل

Application of multilayer perceptron neural network and support vector machine for modeling the hydrodynamic behavior of permeable breakwaters with porous core

In this research, the application of multilayer perceptron (MLP) neural networks and support vector machine (SVM) for modeling the hydrodynamic behavior of Permeable Breakwaters with Porous Core has been investigated. For this purpose, experimental data have been used on the physical model to relate the reflection and transition coefficients of incident waves as the output parameters to the wid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006