Gromov–Witten invariants and quantum cohomology
نویسندگان
چکیده
This article is an elaboration of a talk given at an international conference on Operator Theory, Quantum Probability, and Noncommutative Geometry held during December 20–23, 2004, at the Indian Statistical Institute, Kolkata. The lecture was meant for a general audience, and also prospective research students, the idea of the quantum cohomology based on the Gromov–Witten invariants. Of course there are many important aspects that are not discussed here.
منابع مشابه
Genus-2 Gromov-Witten invariants for manifolds with semisimple quantum cohomology
In [L2], the author studied universal equations for genus-2 Gromov-Witten invariants given in [Ge1] and [BP] using quantum product on the big phase space. Among other results, the author proved that for manifolds with semisimple quantum cohomology, the generating function for genus-2 Gromov-Witten invariants, denoted by F2, is uniquely determined by known genus-2 universal equations. Moreover, ...
متن کاملGromov-Witten invariants for manifolds with semisimple quantum cohomology
In [L2], the author studied universal equations for genus-2 Gromov-Witten invariants given in [Ge1] and [BP] using quantum product on the big phase space. Among other results, the author proved that for manifolds with semisimple quantum cohomology, the genus-2 Gromov-Witten potential function F2 is uniquely determined by known genus-2 universal equations. Moreover, an explicit formula for F2 wa...
متن کاملQuantum Kirwan Morphism and Gromov-witten Invariants of Quotients Ii
This is the second in a sequence of papers in which we construct a quantum version of the Kirwan map from the equivariant quantum cohomology QHG(X) of a smooth polarized complex projective variety X with the action of a connected complex reductive group G to the orbifold quantum cohomology QH(X//G) of its geometric invariant theory quotient X//G, and prove that it intertwines the genus zero gau...
متن کاملGromov–Witten invariants of symplectic quotients and adiabatic limits
We study pseudoholomorphic curves in symplectic quotients as adiabatic limits of solutions to the symplectic vortex equations. Our main theorem asserts that the genus zero invariants of Hamiltonian group actions defined by these equations are related to the genus zero Gromov–Witten invariants of the symplectic quotient (in the monotone case) via a natural ring homomorphism from the equivariant ...
متن کاملStable Spin Maps, Gromov-witten Invariants, and Quantum Cohomology
We introduce the stack M 1/r g,n(V ) of r-spin maps. These are stable maps into a variety V from n-pointed algebraic curves of genus g, with the additional data of an r-spin structure on the curve. We prove that M 1/r g,n(V ) is a Deligne-Mumford stack, and we define analogs of the Gromov-Witten classes associated to these spaces. We show that these classes yield a cohomological field theory (C...
متن کامل