Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer.

نویسندگان

  • Sabina Signoretti
  • Lucia Di Marcotullio
  • Andrea Richardson
  • Sridhar Ramaswamy
  • Beth Isaac
  • Montserrat Rue
  • Franco Monti
  • Massimo Loda
  • Michele Pagano
چکیده

Estrogen receptor (ER) expression and Her-2 amplification define specific subsets of breast tumors for which specific therapies exist. The S-phase kinase-associated protein Skp2 is required for the ubiquitin-mediated degradation of the cdk-inhibitor p27 and is a bona fide proto-oncoprotein. Using microarray analysis and immunohistochemistry, we determined that higher levels of Skp2 are present more frequently in ER-negative tumors than in ER-positive cases. Interestingly, the subset of ER-negative breast carcinomas overexpressing Skp2 are also characterized by high tumor grade, negativity for Her-2, basal-like phenotype, high expression of certain cell cycle regulatory genes, and low levels of p27 protein. We also found that Skp2 expression is cell adhesion-dependent in normal human mammary epithelial cells but not in breast cancer cells and that an inhibition of Skp2 induces a decrease of adhesion-independent growth in both ER-positive and ER-negative cancer cells. Finally, forced expression of Skp2 abolished effects of antiestrogens, suggesting that deregulated Skp2 expression might play a role in the development of resistance to antiestrogens. We conclude that Skp2 has oncogenic potential in breast epithelial cells and is overexpressed in a subset of breast carcinomas (ER- and Her-2 negative) for which Skp2 inhibitors may represent a valid therapeutic option.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting the Oncogenic E3 Ligase Skp2 in Prostate and Breast Cancer Cells with a Novel Energy Restriction-Mimetic Agent

Substantial evidence supports the oncogenic role of the E3 ubiquitin ligase S-phase kinase-associated protein 2 (Skp2) in many types of cancers through its ability to target a broad range of signaling effectors for ubiquitination. Thus, this oncogenic E3 ligase represents an important target for cancer drug discovery. In this study, we report a novel mechanism by which CG-12, a novel energy res...

متن کامل

E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy.

E3 ubiquitin ligase Skp2 attaches ubiquitin to its target proteins and marks them for destruction by the 26S proteasome. This mechanism participates in a number of important cellular processes such as cell proliferation, DNA replication, V(D)J recombination, gene transcription, cellular metabolism and senescence. Skp2 is oncogenic. It is overexpressed in various solid tumors and hematological m...

متن کامل

The key role of ubiquitination and sumoylation in signaling and cancer: a research topic

INTRODUCTION Ubiquitination and sumoylation are two important posttranslational modifications that play pivotal roles in signaling regulation, protein trafficking, protein stability, and transcriptional regulation, ultimately regulating a plethora of biological processes such as cell survival, cell migration, DNA damage response (DDR), neurodegeneration, and cancer. Although ubiquitination is t...

متن کامل

Phosphorylation of Ser72 is dispensable for Skp2 assembly into an active SCF ubiquitin ligase and its subcellular localization.

F-box proteins are the substrate recognition subunits of SCF (Skp1, Cul1, F-box protein) ubiquitin ligase complexes. Skp2 is a nuclear F-box protein that targets the CDK inhibitor p27 for ubiquitin- and proteasome-dependent degradation. In G(0) and during the G(1) phase of the cell cycle, Skp2 is degraded via the APC/C(Cdh1) ubiquitin ligase to allow stabilization of p27 and inhibition of CDKs,...

متن کامل

Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation.

Forkhead transcription factors FOXO1 (FKHR), FOXO3a (FKHRL1), and FOXO4 (AFX) play a pivotal role in tumor suppression by inducing growth arrest and apoptosis. Loss of function of these factors due to phosphorylation and proteasomal degradation has been implicated in cell transformation and malignancy. However, the ubiquitin ligase necessary for the ubiquitination of the FOXO factors and the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 126 11  شماره 

صفحات  -

تاریخ انتشار 2002