Almost Contact Metric Structures on 5-Dimensional Nilpotent Lie Algebras
نویسندگان
چکیده
We study almost contact metric structures on 5-dimensional nilpotent Lie algebras and investigate the class of left invariant almost contact metric structures on corresponding Lie groups. We determine certain classes that a five-dimensional nilpotent Lie group can not be equipped with.
منابع مشابه
The structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملAffine structures on nilpotent contact Lie algebras
Any Lie algebra equipped with a symplectic form can be equipped with an affine structure. On the other hand there exist (2p + 1)-dimensional Lie algebras with contact form and no affine structure. But each nilpotent contact Lie algebra is a one-dimensional central extension of a symplectic algebra. The aim of this work is to study how we can extend, under certain conditions, the symplectic stuc...
متن کاملNilpotent metric Lie algebras of small dimension
In [KO2] we developed a general classification scheme for metric Lie algebras, i.e. for finite-dimensional Lie algebras equipped with a non-degenerate invariant inner product. Here we determine all nilpotent Lie algebras l with dim l = 2 which are used in this scheme. Furthermore, we classify all nilpotent metric Lie algebras of dimension at most 10.
متن کاملComplex Product Structures on 6-dimensional Nilpotent Lie Algebras
We study complex product structures on nilpotent Lie algebras, establishing some of their main properties, and then we restrict ourselves to 6 dimensions, obtaining the classification of 6-dimensional nilpotent Lie algebras admitting such structures. We prove that any complex structure which forms part of a complex product structure on a 6-dimensional nilpotent Lie algebra must be nilpotent in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 8 شماره
صفحات -
تاریخ انتشار 2016