Smooth Approximation for Intrinsic Lipschitz Functions in the Heisenberg Group

نویسندگان

  • GIOVANNA CITTI
  • MARIA MANFREDINI
  • ANDREA PINAMONTI
  • FRANCESCO SERRA CASSANO
چکیده

We characterize intrinsic Lipschitz functions as maps which can be approximated by a sequence of smooth maps, with pointwise convergent intrinsic gradient. We also provide an estimate of the Lipschitz constant of an intrinsic Lipschitz function in terms of the L∞−norm of its intrinsic gradient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothness of Lipschitz Minimal Intrinsic Graphs in Heisenberg Groups

We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

Smoothness of Lipschitz minimal intrinsic graphs in Heisenberg groups Hn, n > 1

We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

ar X iv : 0 80 4 . 34 08 v 1 [ m at h . A P ] 2 1 A pr 2 00 8 SMOOTHNESS OF LIPSCHITZ MINIMAL INTRINSIC GRAPHS IN HEISENBERG GROUPS

We prove that Lipschitz intrinsic graphs in the Heisenberg groups H , with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

Minimal Surfaces and Harmonic Functions in the Heisenberg Group

We study the blow-up of H-perimeter minimizing sets in the Heisenberg group H, n ≥ 2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.

متن کامل

Quasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems

In this paper‎, ‎we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data‎. ‎Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question‎, ‎then the essential properties of the newly introduced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013