PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes

نویسندگان

  • Dae Ho Yoon
  • Seon Hye Yoon
  • Kwang-Sun Ryu
  • Yong Joon Park
چکیده

UNLABELLED We propose PEDOT PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PEDOT PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PEDOT PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PEDOT PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PEDOT PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PEDOT PSS. This implies that PEDOT PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery

Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...

متن کامل

Carbon nanotube/Co3O4 composite for air electrode of lithium-air battery

A carbon nanotube [CNT]/Co3O4 composite is introduced as a catalyst for the air electrode of lithium-air [Li/air] batteries. Co3O4 nanoparticles are successfully attached to the sidewall of the CNT by a hydrothermal method. A high discharge capacity and a low overvoltage indicate that the CNT/Co3O4 composite is a very promising catalyst for the air electrode of Li/air batteries.

متن کامل

Electrochemical properties of a rechargeable aluminum–air battery with a metal–organic framework as air cathode material

The goal of this study was to develop a rechargeable aluminum–air battery with high capacity and longterm durability in charge–discharge electrochemical reactions. We used aluminum terephthalate as a metal–organic framework (MOF) material for the air cathode and 1-ethyl-3-methylimidazolium chloride as an ionic liquid electrolyte. When we used aluminum terephthalate as an air cathode material, t...

متن کامل

Catalytic properties of Co3O4 nanoparticles for rechargeable Li/air batteries

Three types of Co3O4 nanoparticles are synthesized and characterized as a catalyst for the air electrode of a Li/air battery. The shape and size of the nanoparticles are observed using scanning electron microscopy and transmission electron microscopy analyses. The formation of the Co3O4 phase is confirmed by X-ray diffraction. The electrochemical property of the air electrodes containing Co3O4 ...

متن کامل

Studying lithium-ion battery packs cooling system using water-nanofluids composition

In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016