Manipulating Size of Li3V2(PO4)3 with Reduced Graphene Oxide: towards High-Performance Composite Cathode for Lithium Ion Batteries
نویسندگان
چکیده
Lithium vanadium phosphate (Li3V2(PO4)3, LVP)/reduced graphene oxide (rGO) composite is prepared with a rheological method followed by heat treatment. The size and interface of LVP particles, two important merits for a cathode material, can be effectively tuned by the rGO in the composite, which plays as surfactant to assist sol-gelation and simultaneously as conductive carbon coating. As a consequence, the composite with 7.0 ± 0.4 wt.% rGO shows a capacity of 141.6 mAh g(-1) at 0.075 C, and a rate capacity of 119.0 mAh g(-1) at 15 C with respect to the mass of LVP/rGO composite, and an excellent cycling stability that retains 98.7% of the initial discharge capacity after 50 cycles. The improved electrochemical performance is attributed to the well-controlled rGO content that yields synergic effects between LVP and rGO. Not only do the rGO sheets reduce the size of LVP particles that favor the Li(+) ion migration and the electron transfer during charging and discharging, but also contribute to the reversible lithium ions storage.
منابع مشابه
Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.
A three-dimensionally ordered macroporous (3DOM) Li3V2(PO4)3/C cathode material with small-sized macropores (50-140 nm) is successfully synthesized using a colloidal crystal array. The 3DOM architecture is built up from fully densely sintered Li3V2(PO4)3/C nanocomposite ceramics particles. Such a 3DOM Li3V2(PO4)3/C micrometer sized particle combines the advantages of both Li3V2(PO4)3 nanocrysta...
متن کاملCarbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries
Nanomaterials are extensively studied in electrochemical energy storage and conversion systems because of their structural advantages. However, their volumetric energy density still needs improvement due to the high surface area, especially the carbon based nanocomposites. Constructing hierarchical micro-scaled materials from closely stacked subunits is proposed as an effective way to solve the...
متن کاملCarbon Nanofibers Heavy Laden with Li3V2(PO4)3 Particles Featuring Superb Kinetics for High‐Power Lithium Ion Battery
Fast lithium ion and electron transport inside electrode materials are essential to realize its superb electrochemical performances for lithium rechargeable batteries. Herein, a distinctive structure of cathode material is proposed, which can simultaneously satisfy these requirements. Nanosized Li3V2(PO4)3 (LVP) particles can be successfully grown up on the carbon nanofiber via electrospinning ...
متن کاملVoltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کامل