Adding ± 1 to the argument of an Hall - Littlewood polynomial

نویسنده

  • Xavier Viennot
چکیده

Shifting by ±1 powers sums: pi → pi± 1 induces a transformation on symmetric functions that we detail in the case of Hall-Littlewood polynomials. By iteration, this gives a description of these polynomials in terms of plane partitions, as well as some generating functions. We recover in particular an identity of Warnaar related to RogersRamanujan identities. ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o Dédié à Xavier Viennot

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adding ±1 to the Argument of a Hall–littlewood Polynomial

’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o Shifting by ±1 powers sums: pi → pi ± 1 induces a transformation on symmetric functions that we detail in the case of Hall–Littlewood polynomials. By iteration, this gives a description of these polynomials in terms of pl...

متن کامل

An ‎E‎ffective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...

متن کامل

Why Should the Littlewood–richardson Rule Be True?

We give a proof of the Littlewood-Richardson Rule for describing tensor products of irreducible finite-dimensional representations of GLn. The core of the argument uses classical invariant theory, especially (GLn,GLm)duality. Both of the main conditions (semistandard condition, lattice permutation/Yamanouchi word condition) placed on the tableaux used to define Littlewood-Richardson coefficient...

متن کامل

Interpolation, Integrality, and a Generalization of Macdonald's Polynomials

For q = 0 and q = t, one gets the Hall-Littlewood polynomial Pλ(x; t) and the Schur polynomial sλ, respectively, while limt→1 Pλ(x; t, t) yields the Jack polynomial P λ (x). Our first result is a generalization of Pλ(x;q, t) to n “t-parameters.” Thus let τ = (τ1, . . . , τn) be indeterminates, and put F = Q(q, τ). If μ is a partition, write q−μτ for the n-tuple (q−μ1τ1, . . . , q−μnτn). We show...

متن کامل

The expansion of Hall-Littlewood functions in the dual Grothendieck polynomial basis

A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion of stable Grassmannian Grothendieck polynomials into monomials was first given by Buch, using set-valued tableaux. The dual basis of the stable Grothendieck polynomials was gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008