Decompositions of finitely generated and finitely presented groups

نویسنده

  • Laura Ciobanu
چکیده

In this paper we discuss the splitting or decomposing of finitely generated groups into free products, free products with amalgamation or HNN extensions and we discuss the JSJ decomposition of finitely presented groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective JSJ Decompositions

In this paper we describe an elimination process which is a deterministic rewriting procedure that on each elementary step transforms one system of equations over free groups into a finitely many new ones. Infinite branches of this process correspond to cyclic splittings of the coordinate group of the initial system of equations. This allows us to construct algorithmically Grushko’s decompositi...

متن کامل

On uniqueness of JSJ decompositions of finitely generated groups

We show that JSJ decompositions of finitely generated groups are unique whenever they are strongly slide–free. When this condition does not hold they are still unique up to elementary deformation. These results hold for the decompositions of Rips and Sela, Dunwoody and Sageev, and Fujiwara and Papasoglu. We also answer the question of Rips and Sela stated in “Cyclic splittings of finitely prese...

متن کامل

Finitely Presented Wreath Products and Double Coset Decompositions

We characterize which permutational wreath products G⋉W (X) are finitely presented. This occurs if and only if G and W are finitely presented, G acts on X with finitely generated stabilizers, and with finitely many orbits on the cartesian square X. On the one hand, this extends a result of G. Baumslag about infinite presentation of standard wreath products; on the other hand, this provides nont...

متن کامل

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

A characterization of finitely generated multiplication modules

 Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006