Green Generative Modeling: Recycling Dirty Data using Recurrent Variational Autoencoders

نویسندگان

  • Yu Wang
  • Bin Dai
  • Gang Hua
  • John Aston
  • David P. Wipf
چکیده

This paper explores two useful modifications of the recent variational autoencoder (VAE), a popular deep generative modeling framework that dresses traditional autoencoders with probabilistic attire. The first involves a specially-tailored form of conditioning that allows us to simplify the VAE decoder structure while simultaneously introducing robustness to outliers. In a related vein, a second, complementary alteration is proposed to further build invariance to contaminated or dirty samples via a data augmentation process that amounts to recycling. In brief, to the extent that the VAE is legitimately a representative generative model, then each output from the decoder should closely resemble an authentic sample, which can then be resubmitted as a novel input ad infinitum. Moreover, this can be accomplished via special recurrent connections without the need for additional parameters to be trained. We evaluate these proposals on multiple practical outlier-removal and generative modeling tasks, demonstrating considerable improvements over existing algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks

Variational autoencoders are a powerful framework for unsupervised learning. However, previous work has been restricted to shallow models with one or two layers of fully factorized stochastic latent variables, limiting the flexibility of the latent representation. We propose three advances in training algorithms of variational autoencoders, for the first time allowing to train deep models of up...

متن کامل

Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model

In this paper we study generative modeling via autoencoders while using the elegant geometric properties of the optimal transport (OT) problem and the Wasserstein distances. We introduce Sliced-Wasserstein Autoencoders (SWAE), which are generative models that enable one to shape the distribution of the latent space into any samplable probability distribution without the need for training an adv...

متن کامل

Challenges with Variational Autoencoders for Text

We study variational autoencoders for text data to build a generative model that can be used to conditionally generate text. We introduce a mutual information criterion to encourage the model to put semantic information into the latent representation, and compare its efficacy with other tricks explored in literature such as KL divergence cost annealing and word dropout. We compare the log-likel...

متن کامل

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference mo...

متن کامل

Epitomic Variational Autoencoder

In this paper, we propose epitomic variational autoencoder (eVAE), a probabilistic generative model of high dimensional data. eVAE is composed of a number of sparse variational autoencoders called ‘epitome’ such that each epitome partially shares its encoder-decoder architecture with other epitomes in the composition. We show that the proposed model greatly overcomes the common problem in varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017