Pneumatic oscillator circuits for timing and control of integrated microfluidics.

نویسندگان

  • Philip N Duncan
  • Transon V Nguyen
  • Elliot E Hui
چکیده

Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Temperature Compensation Voltage Controlled Oscillator Using a Complementary to Absolute Temperature Voltage Reference

This paper presents a temperature compensation voltage controlled oscillator (VCO) based on Cross-Coupled pair and Colpitts structures which is suitable for military fields. Also, two inductors have been used for increasing the negative conductance. By using this method, start-up condition has been improved. Two varactors and a simple capacitor bank are applied for covering a wide tunning range...

متن کامل

A Current-Mode Single-Resistance-Controlled Oscillator Employing VDCC and All Grounded Passive Elements

Realization of a novel single-resistance-controlled oscillator, employing an active element and all grounded passive elements, is the purpose of this manuscript. With requirements for completing the design being only a single Voltage Differencing Current Conveyor and four grounded passive components, it is also a preferable choice for integrated circuit implementation. The designed circuit has ...

متن کامل

Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.

We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combina...

متن کامل

Multiple independent autonomous hydraulic oscillators driven by a common gravity head

Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator ar...

متن کامل

Electronic control of elastomeric microfluidic circuits with shape memory actuators.

Recently, sophisticated fluidic circuits with hundreds of independent valves have been built by using multi-layer soft-lithography to mold elastomers. However, this shrinking of microfluidic circuits has not been matched by a corresponding miniaturization of the actuation and interfacing elements that control the circuits; while the fluidic circuits are small ( approximately 10-100 micron wide ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 45  شماره 

صفحات  -

تاریخ انتشار 2013