Exponentiability via Double Categories

نویسنده

  • SUSAN NIEFIELD
چکیده

For a small category B and a double category D, let LaxN (B,D) denote the category whose objects are vertical normal lax functors B //D and morphisms are horizontal lax transformations. It is well known that LaxN (B,Cat) ≃ Cat/B, where Cat is the double category of small categories, functors, and profunctors. In [19], we generalized this equivalence to certain double categories, in the case where B is a finite poset. In [23], Street showed that Y //B is exponentiable in Cat/B if and only if the corresponding normal lax functor B // Cat is a pseudo-functor. Using our generalized equivalence, we show that a morphism Y // B is exponentiable in D0/B if and only if the corresponding normal lax functor B // D is a pseudo-functor plus an additional condition that holds for allX //!B in Cat. Thus, we obtain a single theorem which yields characterizations of certain exponentiable morphisms of small categories, topological spaces, locales, and posets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponentiable morphisms of domains

Given a map f in the category ω-Cpo of ω-complete posets, exponentiability of f in ω-Cpo easily implies exponentiability of f in the category Pos of posets, while the converse is not true. We find then the extra conditions needed on f exponentiable in Pos to be exponentiable in ω-Cpo, showing the existence of partial products of the two-point ordered set S = {0 < 1} (Theorem 1.8). Using this ch...

متن کامل

Exponentiability in Homotopy Slices of Top and Pseudo-slices of Cat

We prove a general theorem relating pseudo-exponentiable objects of a bicategory K to those of the Kleisli bicategory of a pseudo-monad on K. This theorem is applied to obtain pseudo-exponentiable objects of the homotopy slices Top//B of the category of topological spaces and the pseudo-slices Cat//B of the category of small categories.

متن کامل

Exponentiable Functors Between Quantaloid-Enriched Categories

Exponentiable functors between quantaloid-enriched categories are characterized in elementary terms. The proof goes as follows: the elementary conditions on a given functor translate into existence statements for certain adjoints that obey some lax commutativity; this, in turn, is precisely what is needed to prove the existence of partial products with that functor; so that the functor’s expone...

متن کامل

Exponentiability in categories of lax algebras

For a complete cartesian-closed category V with coproducts, and for any pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-type condition, it is shown that the category of lax reflexive (T,V)-algebras is a quasitopos. This result encompasses many known and new examples of quasitopoi. Mathematics Subject Classification: 18C20, 18D15, 18A05, 18B30, 18B35.

متن کامل

2010 Category Theory Octoberfest

Steve Awodey (CMU): “Sketch of the homotopy interpretation of intensional type theory” Abstract: As a tutorial of sorts, I will outline the homotopy interpretation of intensional type theory and survey some of the recent results by various people. As a tutorial of sorts, I will outline the homotopy interpretation of intensional type theory and survey some of the recent results by various people...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012