Isomorphic random subspaces and quotients of convex and quasi-convex bodies
نویسندگان
چکیده
We extend the results of [LMT] to the non-symmetric and quasiconvex cases. Namely, we consider finite-dimensional space endowed with gauge of either closed convex body (not necessarily symmetric) or closed symmetric quasi-convex body. We show that if a generic subspace of some fixed proportional dimension of one such space is isomorphic to a generic quotient of some proportional dimension of another space then for any proportion arbitrarily close to 1, the first space has a lot of Euclidean subspaces and the second space has a lot of Euclidean quotients.
منابع مشابه
On Volume Distribution in 2-convex Bodies
We consider convex sets whose modulus of convexity is uniformly quadratic. First, we observe several interesting relations between different positions of such “2-convex” bodies; in particular, the isotropic position is a finite volume-ratio position for these bodies. Second, we prove that high dimensional 2-convex bodies posses one-dimensional marginals that are approximately Gaussian. Third, w...
متن کاملFuzzy convergence structures in the framework of L-convex spaces
In this paper, fuzzy convergence theory in the framework of $L$-convex spaces is introduced. Firstly, the concept of $L$-convex remote-neighborhood spaces is introduced and it is shown that the resulting category is isomorphic to that of $L$-convex spaces. Secondly, by means of $L$-convex ideals, the notion of $L$-convergence spaces is introduced and it is proved that the category of $L$-con...
متن کاملSubspaces and Quotients of Banach Spaces with Shrinking Unconditional Bases
The main result is that a separable Banach space with the weak∗ unconditional tree property is isomorphic to a subspace as well as a quotient of a Banach space with a shrinking unconditional basis. A consequence of this is that a Banach space is isomorphic to a subspace of a space with an unconditional basis iff it is isomorphic to a quotient of a space with an unconditional basis, which solves...
متن کاملCharacterizations of $L$-convex spaces
In this paper, the concepts of $L$-concave structures, concave $L$-interior operators and concave $L$-neighborhood systems are introduced. It is shown that the category of $L$-concave spaces and the category of concave $L$-interior spaces are isomorphic, and they are both isomorphic to the category of concave $L$-neighborhood systems whenever $L$ is a completely distributive lattice. Also, it i...
متن کاملCategory and subcategories of (L,M)-fuzzy convex spaces
Inthispaper, (L,M)-fuzzy domain finiteness and (L,M)-fuzzy restricted hull spaces are introduced, and several characterizations of the category (L,M)-CS of (L,M)-fuzzy convex spaces are obtained. Then, (L,M)-fuzzy stratified (resp. weakly induced, induced) convex spaces are introduced. It is proved that both categories, the category (L,M)-SCS of (L,M)-fuzzy stratified convex spaces and the cate...
متن کامل