The rule breaking Cr2(CO)10. A 17 electron Cr system or a Cr=Cr double bond?

نویسندگان

  • Se Li
  • Nancy A Richardson
  • Yaoming Xie
  • R Bruce King
  • Henry F Schaefer
چکیده

Density functional theory (DFT) has been used to investigate the conformations and thermochemistry on the singlet and triplet potential energy surfaces (PES) of Cr2(CO)10. The global minimum energy structure for the lowest singlet state of C2h symmetry is consistent with a model of two interacting Cr(CO)5 fragments in which one carbonyl in each fragment acts as an asymmetric four-electron donor bridging carbonyl, with chromium-chromium distances of 2.93 A (B3LYP) or 2.83 A (BP86). Avoiding a Cr...Cr bond by incorporating four-electron donor CO groups in this way allows each chromium atom in singlet Cr(CO)10 to attain the favored 18-electron configuration by using, in a simple picture of the bonding, only the six octahedral sp3d2 hybrids. The dissociation energy to two Cr(CO)5 fragments or to Cr(CO)6 + Cr(CO)4 fragments is predicted to be 10 kcal mol(-1). The lowest triplet state of Cr2(CO)10 is predicted to lie approximately 10 kcal mol(-1) above the singlet global minimum. In the case of triplet Cr2(CO)10 the lowest energy minima were found to be of C2 and C2h symmetry, with similar energies. The chromium-chromium distances in triplet Cr2(CO)10 were found to be shorter than those in the corresponding singlet structures, namely 2.81 (B3LYP) or 2.68 A (BP86) suggesting a sigma + 2(1/2) pi Cr=Cr double bond similar to the O=O bond in O2 or the Fe=Fe bond in the experimentally observed triplet state (Me5C5)2Fe2(mu-CO)3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarkably short metal-metal bonds: a lantern-type quintuply bonded dichromium(I) complex.

The field of quadruply bonded dinuclear complexes in which two metal atoms are embraced by eight ligands has been considered mature. The bonding and electronic structures of these compounds have been well understood, ever since the discovery of the first dimetal species containing a quadruple bond, [Re2Cl8] 2 , over 40 years ago. The quest for thermally stable and isolable dinuclear complexes w...

متن کامل

Shear Bond Strength of Porcelain Veneering to Nickel-Chromium, Chromium-Cobalt, Zirconia and Lithium Disilicate

Background and Aim: High chipping rates of the veneering porcelain in zirconia ce-ramic restorations have been reported in many clinical studies. However, information on the bonding behavior of veneering porcelain to zirconia and lithium disilicate frameworks is limited. The purpose of this study was to evaluate the bond-ing strength of porcelain veneering to zirconia, lithium disilicate, nicke...

متن کامل

The electron density analysis of Cr(CO)3L complexes (L=benzene and graphyne)

h6-benzne, h6-garphyne) was studied with MPW1PW91 quantum chemical computations. Quantumtheory of atoms in molecules (QTAIM) was applied to elucidate these complexes Cr-CO bonds. Theellipticity (e) and h values of the Cr-CO bonds were calculated. The amount of pp-dp back-donation ofCr-CO bonds were illustrated by calculation of the magnitude of the quadrupole polarization of c...

متن کامل

Breaking bonds with the left eigenstate completely renormalized coupled-cluster method.

The recently developed [P. Piecuch and M. Wloch, J. Chem. Phys. 123, 224105 (2005)] size-extensive left eigenstate completely renormalized (CR) coupled-cluster (CC) singles (S), doubles (D), and noniterative triples (T) approach, termed CR-CC(2,3) and abbreviated in this paper as CCL, is compared with the full configuration interaction (FCI) method for all possible types of single bond-breaking...

متن کامل

Interactions of low-energy electrons with the FEBID precursor chromium hexacarbonyl (Cr(CO)6)

Interactions of low-energy electrons with the FEBID precursor Cr(CO)6 have been investigated in a crossed electron-molecular beam setup coupled with a double focusing mass spectrometer with reverse geometry. Dissociative electron attachment leads to the formation of a series of anions by the loss of CO ligand units. The bare chromium anion is formed by electron capture at an electron energy of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2003