The Structure Theorem for Finitely Generated Abelian Groups

نویسنده

  • Mark Cerenzia
چکیده

This paper provides a thorough explication of the Structure Theorem for Abelian groups and of the background information necessary to prove it. The outline of this paper is as follows. We first consider some theorems related to abelian groups and to R-modules. In this section we see that every finitely generated abelian group is the epimorphic image of a finitely generated free abelian group. Here also submodules of a finitely generated module over a principal ideal domain are shown to be finitely generated as well. Notably, this proposition is proved by examining a short exact sequence of R-modules. Then, in the next section, we learn a procedure for diagonalizing m×n matrices with products of elementary matrices. Moreover, these products can be interpreted as change-of-basis matrices. We will see the relevance of this procedure in the proof of the Stacked Basis Theorem. This theorem shows that for a subgroup of a finitely generated group, there is a basis of that subgroup whose elements are multiples of the basis elements of the group. Finally, the propositions enumerated in these sections allow us to prove and understand the Structure Theorem for Abelian Groups. This theorem asserts that every finitely generated abelian group is the direct sum of cyclic groups and of a free abelian group. Throughout this paper, examples and definitions will be included to aid the reader in understanding the relevant concepts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary Equivalence and Profinite Completions: a Characterization of Finitely Generated Abelian-by-finite Groups

In this paper, we show that any finitely generated abelian-byfinite group is an elementary submodel of its profinite completion. It follows that two finitely generated abelian-by-finite groups are elementarily equivalent if and only if they have the same finite images. We give an example of two finitely generated abelian-by-finite groups G, H which satisfy these properties while G x Z and H x Z...

متن کامل

The Quasi-morphic Property of Group

A group is called morphic if for each normal endomorphism α in end(G),there exists β such that ker(α)= Gβ and Gα= ker(β). In this paper, we consider the case that there exist normal endomorphisms β and γ such that ker(α)= Gβ and Gα = ker(γ). We call G quasi-morphic, if this happens for any normal endomorphism α in end(G). We get the following results: G is quasi-morphic if and only if, for any ...

متن کامل

Introduction to Abstract Algebra ( Math 113 )

3 Groups 12 3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Subgroups, Cosets and Lagrange’s Theorem . . . . . . . . . . . . . . . . . . 14 3.3 Finitely Generated Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Permutation Groups and Group Actions . . . . . . . . . . . . . . . . . . . . 19 3.5 The Oribit-Stabiliser Theorem . ....

متن کامل

MODULES OVER A PID A module over a PID is an abelian group

A module over a PID is an abelian group that also carries multiplication by a particularly convenient ring of scalars. Indeed, when the scalar ring is the integers, the module is precisely an abelian group. This writeup presents the structure theorem for finitely generated modules over a PID. Although the result is essentially similar to the theorem for finitely generated abelian groups from ea...

متن کامل

MODULES OVER A PID A module over a PID is an abelian group

A module over a PID is an abelian group that also carries multiplication by a particularly convenient ring of scalars. Indeed, when the scalar ring is the integers, the module is precisely an abelian group. This writeup presents the structure theorem for finitely generated modules over a PID. Although the result is essentially similar to the theorem for finitely generated abelian groups from ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009