Biodegradable nanoparticles of methoxy poly(ethylene glycol)-b-poly( d, l-lactide)/methoxy poly(ethylene glycol)- b-poly(ϵ-caprolactone) blends for drug delivery
نویسندگان
چکیده
The effects of blend weight ratio and polyester block length of methoxy poly(ethylene glycol)-b-poly( d, l-lactide) (MPEG- b-PDLL)/methoxy poly(ethylene glycol)- b-poly(ϵ-caprolactone) (MPEG- b-PCL) blends on nanoparticle characteristics and drug release behaviors were evaluated. The blend nanoparticles were prepared by nanoprecipitation method for controlled release of a poorly water-soluble model drug, indomethacin. The drug-loaded nanoparticles were nearly spherical in shape. The particle size and drug loading efficiency slightly decreased with increasing MPEG- b-PCL blend weight ratio. Two distinct thermal decomposition steps from thermogravimetric analysis suggested different blend weight ratios. Thermal transition changes from differential scanning calorimetry revealed miscible blending between MPEG- b-PDLL and MPEG- b-PCL in an amorphous phase. An in vitro drug release study demonstrated that the drug release behaviors depended upon the PDLL block length and the blend weight ratios but not on PCL block length.
منابع مشابه
Synthesis and Thermal Properties of Novel Biodegradable ABCBA Pentablock Copolymers from Poly (Ethylene glycol), L-Lactide and p-Dioxanone
In this work, new biodegradable ABCBA type pentablock copolymers with different mole ratio of L-lactide and PPDO-b-PEG-b-PPDO triblock copolymer were synthesized and characterized. In the first step, PPDO-b-PEG-b-PPDO triblock copolymer was synthesized via a ring-opening polymerization of P-DiOxanone (PDO) monomer with Poly (Ethylene Glycol) (P...
متن کاملDocetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization
Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...
متن کاملDocetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-Vitro Characterization
Microwave irradiation was used to synthesize PEG-PCL and PEG-PLA copolymers that are composed of biodegradable polymers including PEG, PLA, and PCL. These copolymers were used for loading docetaxel in nanoparticles. Single emulsion-solvent evaporation technique was applied for preparing the PEG-PLA and PEG-PCL mixed nanoparticles (micelles and polymersomes) with different proportions, including...
متن کاملSynthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers
Amphiphilic block copolymers have attracted a great deal of attention in drug delivery systems. In this work, a series of monomethoxy-poly (ethylene glycol)-poly (ε-caprolactone-co-D,L-lactide) (MPEG-PCLA) copolymers with variable composition of poly (ε-caprolactone) (PCL) and poly (D,L-lactide) (PDLLA) were prepared via ring-opening copolymerization of ε-CL and D,L-LA in the presence of MPEG a...
متن کاملPReS-FINAL-2086: In vitro investigation of the sustained therapeutic effect of etanercept loaded microspheres on human rheumatoid arthritis fibroblast-like synoviocytes
Objectives We aimed to develop a sustained release system for an anti-TNFa drug in treatment of chronic inflammatory arthritis. A novel form of intra-articularly injectable etanercept (ETN) loaded poly(ε-caprolactone) (PCL) or methoxy poly(ethylene glycol)-poly(ε-caprolactone)methoxy poly(ethylene glycol) (MPEG-PCL-MPEG) microspheres (patent pending) were prepared to provide long term controlle...
متن کامل