REDEMPTION: reduced dimension ensemble modeling and parameter estimation

نویسندگان

  • Yang Liu
  • Erica Manesso
  • Rudiyanto Gunawan
چکیده

UNLABELLED Here, we present REDEMPTION ( RE: duced D: imension E: nsemble M: odeling and P: arameter estima TION: ), a toolbox for parameter estimation and ensemble modeling of ordinary differential equations (ODEs) using time-series data. For models with more reactions than measured species, a common scenario in biological modeling, the parameter estimation is formulated as a nested optimization problem based on incremental parameter estimation strategy. REDEMPTION also includes a tool for the identification of an ensemble of parameter combinations that provide satisfactory goodness-of-fit to the data. The functionalities of REDEMPTION are accessible through a MATLAB user interface (UI), as well as through programming script. For computational speed-up, REDEMPTION provides a numerical parallelization option using MATLAB Parallel Computing toolbox. AVAILABILITY AND IMPLEMENTATION REDEMPTION can be downloaded from http://www.cabsel.ethz.ch/tools/redemption. CONTACT [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Joint state and parameter estimation with an iterative ensemble Kalman smoother

Both ensemble filtering and variational data assimilation methods have proven useful in the joint estimation of state variables and parameters of geophysical models. Yet, their respective benefits and drawbacks in this task are distinct. An ensemble variational method, known as the iterative ensemble Kalman smoother (IEnKS) has recently been introduced. It is based on an adjoint model-free vari...

متن کامل

Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter

A new parameter estimation algorithm based on ensemble Kalman filter (EnKF) is developed. The developed algorithm combined with the proposed problem parametrization offers an efficient parameter estimation method that converges using very small ensembles. The inverse problem is formulated as a sequential data integration problem. Gaussian Process Regression (GRP) is used to integrate the prior ...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Anova Expansions and Efficient Sampling Methods for Parameter Dependent Nonlinear Pdes

The impact of parameter dependent boundary conditions on solutions of a class of nonlinear partial differential equations and on optimization problems constrained by such equations is considered. The tools used to gain insights about these issues are the Analysis of Variance (ANOVA) expansion of functions and the related notion of the effective dimension of a function; both concepts are reviewe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015