Enhancing the Autonomy of Teleoperated Redundant Manipulators Through Fusion of Intelligent Control Modules
نویسندگان
چکیده
This paper presents a method for redundancy resolution of an industrial manipulator in a teleoperated force control task A seven degree-of-freedom (DOF) industrial manipulator manufactured by the Mit-subishi Heavy Industries Ltd. is used for experiments. The task involves obeying a force command sent from a remote computer while autonomously adapting the posture to avoid unexpected obstacles moving toward the manipulator. Redundancy resolution is employed for autonomous adaptation of the configuration to avoid the obstacle while continuing the force control task This self-adaptive skill on the slave manipulator side is very important because teleoperation is often performed in dangerous or partially unknown environments where unexpected changes such as moving obstacles can well be expected. In such situations, the control ability of the master side is very limited due to the practical limitations of vision sensors to capture a comprehensive view of the environment and the limitations of the degrees of freedom on the master ma-nipulator. The proposed method relies on two modules of an intelligent controller on the slave side. The first is an on-line fuzzy neural network (FNN) for intelligent force control, and the second is a configuration controller that works in harmony with the first to exploit redundancy to react to avoid moving obstacles such that the latter does not inhibit the progress of the former. The second controller generates joint velocity commands in null space of the hand Jacobian, so that its activation does not affect the force controller. Here we show that the proposed method can skillfully avoid a moving obstacle without stopping the force control task This skillful adaptation ability can significantly improve the efficiency and safety of teleoperated force control tasks with less burden on the master side. This paper presents some promising experimental results to demonstrate the effectiveness of the proposed method.
منابع مشابه
Inverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory
The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...
متن کاملInverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory
The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...
متن کاملInterval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کاملControl of Truss-based Manipulators Using Virtual Serial Models
This paper introduces a novel method for Cartesian trajectory and performance optimization control of kinematically-redundant trussbased manipulators (TBMs), The Virtual Serial Manipulator Approach. The approach is to model complex in-parallel-actuated TBMs as simpler kinematically-equivalent virtual serial manipulators. Standard control methods for kinematically-redundant serial manipulators c...
متن کاملA New Inverse Kinematic Algorithm for Discretely Actuated Hyper-redundant Manipulators
The term discretely actuated hyperredundant manipulator is applied to a kind of manipulators which consists of serially connected modules. Such modules are composed of discretely actuated joints having finite stable states. Since the previous studies have rarely offered satisfactory results regarding the problem of inverse kinematics of discretely actuated hyper-redundant manipulators, the pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JRM
دوره 14 شماره
صفحات -
تاریخ انتشار 2002