Heisenberg Uncertainty Principle for the q-Bessel Fourier transform
نویسنده
چکیده
In this paper we uses an I.I. Hirschman-W. Beckner entropy argument to give an uncertainty inequality for the q-Bessel Fourier transform: Fq,vf(x) = cq,v ∫ ∞ 0 f(t)jv(xt, q 2)t2v+1dqt, where jv(x, q) is the normalized Hahn-Exton q-Bessel function.
منابع مشابه
On Some Inequalities of Uncertainty Principles Type in Quantum Calculus
The aim of this paper is to generalize the q-Heisenberg uncertainty principles studied by Bettaibi et al. 2007, to state local uncertainty principles for the q-Fourier-cosine, the q-Fourier-sine, and the q-Bessel-Fourier transforms, then to provide an inequality of Heisenberg-Weyl-type for the q-Bessel-Fourier transform.
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملAN LP-LQ-VERSION OF MORGAN’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM
n this article, we prove An Lp-Lq-version of Morgan’s theorem for the generalized Bessel transform.
متن کاملArchives of Inequalities and Applications 1 (2003) 451-462 AN UNCERTAINTY PRINCIPLE FOR A MODIFIED Y-TRANSFORM
An uncertainty principle is obtained for a modified Yν-transform of order ν. The principle is similar to the classical Heisenberg-Weyl uncertainty principle for the Fourier transform on R.
متن کاملFourier Analysis and q-Gaussian Functions: Analytical and Numerical Results
It is a consensus in signal processing that the Gaussian kernel and its partial derivatives enable the development of robust algorithms for feature detection. Fourier analysis and convolution theory have central role in such development. In this paper we collect theoretical elements to follow this avenue but using the q-Gaussian kernel that is a nonextensive generalization of the Gaussian one. ...
متن کامل