Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited
نویسندگان
چکیده
Mitosis requires precise coordination of multiple global reorganizations of the nucleus and cytoplasm. Cyclin-dependent kinase 1 (Cdk1) is the primary upstream kinase that directs mitotic progression by phosphorylation of a large number of substrate proteins. Cdk1 activation reaches the peak level due to positive feedback mechanisms. By inhibiting Cdk chemically, we showed that, in prometaphase, when Cdk1 substrates approach the peak of their phosphorylation, cells become capable of proper M-to-G1 transition. We interfered with the molecular components of the Cdk1-activating feedback system through use of chemical inhibitors of Wee1 and Myt1 kinases and Cdc25 phosphatases. Inhibition of Wee1 and Myt1 at the end of the S phase led to rapid Cdk1 activation and morphologically normal mitotic entry, even in the absence of G2. Dampening Cdc25 phosphatases simultaneously with Wee1 and Myt1 inhibition prevented Cdk1/cyclin B kinase activation and full substrate phosphorylation and induced a mitotic "collapse," a terminal state characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis. This was blocked by the PP1/PP2A phosphatase inhibitor, okadaic acid. These findings suggest that the positive feedback in Cdk activation serves to overcome the activity of Cdk-opposing phosphatases and thus sustains forward progression in mitosis.
منابع مشابه
Subcellular localisation of human wee1 kinase is regulated during the cell cycle.
Wee1 kinase-dependent phosphorylation of cdc2 maintains the cdc2/cyclin B complex in an inert form until it is activated by the cdc25 tyrosine phosphatase at the end of G2. As described for cdc25, cell cycle-linked changes in the intracellular localisation of wee1 may constitute an important aspect of the temporal regulation of cdc2 activity. Here we report that the subcellular distribution of ...
متن کاملTorin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells
The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lie...
متن کاملMitotic control in the absence of cdc25 mitotic inducer in fission yeast.
Fission yeast cells tolerate the total absence of the cdc25 mitotic inducer in two cases, either in cdc2-3w or in wee1 genetic backgrounds. In the cdc2-3w cdc25Delta double mutant, the rate-limiting step leading to mitosis is reaching a critical size. However, the size control of this mutant operates in late G2, which is different from wild-type (WT) cells. This fact suggests that in WT the rat...
متن کاملProlonged mitotic arrest induced by Wee1 inhibition sensitizes breast cancer cells to paclitaxel
Wee1 kinase is a crucial negative regulator of Cdk1/cyclin B1 activity and is required for normal entry into and exit from mitosis. Wee1 activity can be chemically inhibited by the small molecule MK-1775, which is currently being tested in phase I/II clinical trials in combination with other anti-cancer drugs. MK-1775 promotes cancer cells to bypass the cell-cycle checkpoints and prematurely en...
متن کاملA quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system.
A detailed model of the G(2) DNA damage checkpoint (G2DDC) system is presented that includes complex regulatory networks of the mitotic kinase Cdc2, phosphatase Cdc25, Wee1 kinase, and damage signal transduction pathways involving Chk1 and p53. Assumptions on the kinetic equations of the G2DDC are made, and computer simulations are carried out to demonstrate how the various subsystems operate t...
متن کامل