Constructing and classifying neighborhood anti-Sperner graphs

نویسنده

  • John P. McSorley
چکیده

For a simple graph G let NG(u) be the (open) neighborhood of vertex u ∈ V (G). Then G is neighborhood anti-Sperner (NAS) if for every u there is a v ∈ V (G)\{u} with NG(u) ⊆ NG(v). And a graph H is neighborhood distinct (ND) if every neighborhood is distinct, i.e., if NH(u) 6= NH(v) when u 6= v, for all u and v ∈ V (H). In Porter and Yucas [3] a characterization of regular NAS graphs was given: ‘each regular NAS graph can be obtained from a host graph by replacing vertices by null graphs of appropriate sizes, and then joining these null graphs in a prescribed manner’. We extend this characterization to all NAS graphs, and give algorithms to construct all NAS graphs from host ND graphs. Then we find and classify all connected r-regular NAS graphs for r = 0, 1, . . . , 6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orphan complexes of neighborhood anti-Sperner graphs

We introduce and study a class of simplicial complexes, the orphan complexes, associated to simple graphs whose family of (open or closed) vertex-neighborhoods are anti-Sperner. Under suitable restrictions, we show that orphan complexes of such graphs are always shellable and provide a characterization of graphs in terms of induced forbidden subgraphs contained in this restricted subfamily.

متن کامل

Enumerating Labelled Graphs with Certain Neighborhood Properties

Properties of (connected) graphs whose closed or open neighborhood families are Sperner, anti-Sperner, distinct or none of the proceeding have been extensively examined. In this paper we examine 24 properties of the neighborhood family of a graph. We give asymptotic formulas for the number of (connected) labelled graphs for 12 of these properties. For the other 12 properties, we give bounds for...

متن کامل

Sperner capacities

We determine the asymptotics of the largest family of qualitatively 2{independent k{ partitions of an n{set, for every k > 2. We generalize a Sperner-type theorem for 2{partite sets of KK orner and Simonyi to the k{partite case. Both results have the feature that the corresponding trivial information-theoretic upper bound is tight. The results follow from a more general Sperner capacity theorem...

متن کامل

Classifying pentavalnet symmetric graphs of order $24p$

A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008