Dynamics for Nonlinear Difference Equation xn+1=(xn-k)/(+xn-lp)
نویسندگان
چکیده
We mainly study the global behavior of the nonlinear difference equation in the title, that is, the global asymptotical stability of zero equilibrium, the existence of unbounded solutions, the existence of period two solutions, the existence of oscillatory solutions, the existence, and asymptotic behavior of non-oscillatory solutions of the equation. Our results extend and generalize the known ones.
منابع مشابه
Dynamics of a Higher Order Nonlinear Difference Equation
We consider the higher-order nonlinear difference equation xn 1 α xn / A Bxn xn−k , n 0, 1, . . ., where parameters are positive real numbers and initial conditions x−k, . . . , x0 are nonnegative real numbers, k ≥ 2. We investigate the periodic character, the invariant intervals, and the global asymptotic stability of all positive solutions of the abovementioned equation. We show that the uniq...
متن کاملThe Periodic Character of the Difference Equation xn+1=f(xn-l+1,xn-2k+1)
In this paper, we consider the nonlinear difference equation xn 1 f xn−l 1, xn−2k 1 , n 0, 1, . . . , where k, l ∈ {1, 2, . . . } with 2k / l and gcd 2k, l 1 and the initial values x−α, x−α 1, . . . , x0 ∈ 0, ∞ with α max{l − 1, 2k − 1}. We give sufficient conditions under which every positive solution of this equation converges to a not necessarily prime 2-periodic solution, which extends and ...
متن کاملGeneralized Hénon Difference Equations with Delay
Charles Conley once said his goal was to reveal the discrete in the continuous. The idea here of using discrete cohomology to elicit the behavior of continuous dynamical systems was central to his program. We combine this idea with our idea of “expanders” to investigate a difference equation of the form xn = F (xn−1, . . . , xn−m) when F has a special form. Recall that the equation xn = q(xn−1)...
متن کاملGlobal attractivity of a higher-order nonlinear difference equation
In this paper, we investigate the global attractivity of negative solutions of the nonlinear difference equation xn+1 = 1− xn−k A + xn , n = 0, 1, . . . , where A ∈ (−∞, 0), k is a positive integer and initial conditions x−k, · · · , x0 are arbitrary real numbers. We show that the unique negative equilibrium of abovementioned equation is a global attractor with a basin under certain conditions....
متن کاملOscillatory and Asymptotic Behavior of Fourth order Quasilinear Difference Equations
where ∆ is the forward difference operator defined by ∆xn = xn+1 −xn, α and β are positive constants, {pn} and {qn} are positive real sequences defined for all n ∈ N(n0) = {n0, n0 + 1, ...}, and n0 a nonnegative integer. By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all n ∈ N(n0). If any four consecutive values of {xn} are given, then a solution {xn...
متن کامل