Alterations in vesicular dopamine uptake contribute to tolerance to the neurotoxic effects of methamphetamine.
نویسندگان
چکیده
Previous studies demonstrated that tolerance to the long-term neurotoxic effects of methamphetamine on dopamine neurons could be induced by pretreating with multiple injections of escalating doses of methamphetamine. The mechanism(s) underlying this tolerance phenomenon is unknown. Some recent studies suggested that aberrant vesicular monoamine transporter-2 (VMAT-2) and dopamine transporter function contribute to neurotoxic effects of methamphetamine. Hence, the purpose of this study was to explore the role of the VMAT-2 and dopamine transporter in the induction of tolerance to the longterm persistent dopaminergic deficits caused by methamphetamine. A second purpose was to investigate the potential role of hyperthermia and alterations in brain methamphetamine distribution in this tolerance. Results revealed that the methamphetamine pretreatment regimen attenuated both the acute methamphetamine-induced decrease in VMAT-2 function 2 h after the methamphetamine challenge administration and its resulting persistent dopamine deficits without attenuating the acute methamphetamine-induced decreases in dopamine transporter uptake. Furthermore, pretreatment with methamphetamine prior to a high-dose methamphetamine challenge administration also attenuated the acute methamphetamine-induced redistribution of VMAT-2 immunoreactivity within the nerve terminal. This protection was not due to alterations in concentration of methamphetamine in the brain because both the methamphetamine- and saline-pretreated rats had similar amounts of methamphetamine and amphetamine at 30 min to 2 h after the last methamphetamine challenge injection. In summary, these data are the first to demonstrate an association between the prevention of acute alterations in vesicular dopamine uptake and the development of tolerance to the neurotoxic effects of methamphetamine.
منابع مشابه
Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits.
It has been hypothesized that high-dose methamphetamine treatment rapidly redistributes cytoplasmic dopamine within nerve terminals, leading to intraneuronal reactive oxygen species formation and well characterized persistent dopamine deficits. We and others have reported that in addition to this persistent damage, methamphetamine treatment rapidly decreases vesicular dopamine uptake, as assess...
متن کاملRapid Communication Methamphetamine Rapidly Decreases Vesicular Dopamine Uptake
Vesicular sequestration is important in the regulation of cytoplasmic concentrations of monoamines such as dopamine. Moreover, recent evidence suggests that increases in cytoplasmic dopamine levels, perhaps attributable to changes in vesicular monoamine transporter function, contribute to methamphetamine-induced dopaminergic deficits. Hence, we examined whether striatal vesicular uptake is alte...
متن کاملAge-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity.
Tens of thousands of adolescents and young adults have used illicit methamphetamine. This is of concern since its high-dose administration causes persistent dopaminergic deficits in adult animal models. The effects in adolescents are less studied. In adult rodents, toxic effects of methamphetamine may result partly from aberrant cytosolic dopamine accumulation and subsequent reactive oxygen spe...
متن کاملRegulation of the vesicular monoamine transporter-2: a novel mechanism for cocaine and other psychostimulants.
The plasmalemmal dopamine (DA) transporter (DAT) is a principal site of action for cocaine. This report presents the novel finding that in addition to inhibiting DAT function, cocaine administration rapidly alters vesicular DA transport. Specifically, cocaine treatment abruptly and reversibly increased both the V(max) of DA uptake and the B(max) of vesicular monoamine transporter-2 (VMAT-2) lig...
متن کاملVesicular-arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedlings
Effects of the mycorrhizal fungus Glomus intraradices on establishment of subterranean clover (Trifolium subterraneum L.) seedlings in saline conditions were studied in a glasshouse experiment. Growth and nutrient uptake were determined 10, 20 and 30 days after transplanting of mycorrhizal and nonmycorrhizal matched seedlings into soils with five different levels of salinity. Mycorrhizal plants...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 309 2 شماره
صفحات -
تاریخ انتشار 2004