Retrotransposon RNA expression and evidence for retrotransposition events in human oocytes.
نویسندگان
چکیده
Although human diseases of retrotransposition-derived etiology have been documented, retrotransposon RNA expression and the occurrence of retrotransposition events in the human oocyte are not studied. We investigated the RNA expression of L1 and HERV-K10 retrotransposons in human oocytes by RT-PCR analysis with designed primers. Using denucleated germinal vesicles (GVs), we detected RT-PCR products of expressed L1, HERV-K10 and, unexpectedly, SINE-R, VNTR and Alu (SVA) retrotransposons. Their transcript specificities were identified as such following RNA-FISH and their origin by cloning and sequence alignment analyses. Assessing the expression level in comparison with somatic cells by densitometry analysis, we found that although in normal lymphocytes and transformed HeLa cells their profile was in an order of L1 > HERV-K10 > SVA, remarkably this was reversed in oocytes. To investigate whether de novo retrotransposition events occur and reverse transcriptases are expressed in the human oocyte, we introduced in GVs either a retrotransposition active human L1 or mouse reverse transcriptase deficient-VL30 retrotransposon tagged with an EGFP-based retrotransposition cassette. Interestingly, in both the cases, we observed EGFP-positive oocytes, associated with an abnormal morphology for L1 and granulation for VL30, and the retrotransposition events were confirmed by PCR. Our results: (i) show that L1, HERV-K10 and SVA retrotransposons are transcriptionally expressed and (ii) provide evidence, for the first time, for retrotransposition events occurring in the human oocyte. These findings suggest that both, network of retrotransposon transcripts and controlled retrotranspositions, might serve important functions required for oocyte development and fertilization while the uncontrolled ones might explain the onset of genetic disorders.
منابع مشابه
A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon
Long interspersed nuclear elements (LINE-1 or L1) comprise 17% of the human genome, although only 80-100 L1s are considered retrotransposition-competent (RC-L1). Despite their small number, RC-L1s are still potential hazards to genome integrity through insertional mutagenesis, unequal recombination and chromosome rearrangements. In this study, we provide several lines of evidence that the LINE-...
متن کاملThe RNAPII-CTD Maintains Genome Integrity through Inhibition of Retrotransposon Gene Expression and Transposition
RNA polymerase II (RNAPII) contains a unique C-terminal domain that is composed of heptapeptide repeats and which plays important regulatory roles during gene expression. RNAPII is responsible for the transcription of most protein-coding genes, a subset of non-coding genes, and retrotransposons. Retrotransposon transcription is the first step in their multiplication cycle, given that the RNA in...
متن کاملLINE Drive Retrotransposition and Genome Instability
The LINE-1 (L1) retrotransposon, the most important human mobile element, shapes the genome in many ways. Now two groups provide evidence that L1 retrotransposition is associated with large genomic deletions and inversions in transformed cells. If these events occur at a similar frequency in vivo, they have had a substantial effect on human genome evolution.
متن کاملA role for retrotransposon LINE-1 in fetal oocyte attrition in mice.
Fetal oocyte attrition (FOA) is a conserved but poorly understood process of elimination of more than two-thirds of meiotic prophase I (MPI) oocytes before birth. We now implicate retrotransposons LINE-1 (L1), activated during epigenetic reprogramming of the embryonic germline, in FOA in mice. We show that wild-type fetal oocytes possess differential nuclear levels of L1ORF1p, an L1-encoded pro...
متن کاملCrossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer
Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 18 7 شماره
صفحات -
تاریخ انتشار 2009