On Constructions of a Sort of MDS Block Diffusion Matrices for Block Ciphers and Hash Functions

نویسندگان

  • Ruoxin Zhao
  • Rui Zhang
  • Yongqiang Li
  • Baofeng Wu
چکیده

Many modern block ciphers use maximum distance separate (MDS) matrices as their diffusion layers. In this paper, we propose a new method to verify a sort of MDS diffusion block matrices whose blocks are all polynomials in a certain primitive block over the finite field F2. And then we discover a new kind of transformations that can retain MDS property of diffusion matrices and generate a series of new MDS matrices from a given one. Moreover, we get an equivalence relation from this kind of transformation. And MDS property is an invariant with respect to this equivalence relation which can greatly reduce the amount of computation when we search for MDS matrices. The minimal polynomials of matrices play an important role in our strategy. To avoid being too theoretical, we list a series of MDS diffusion matrices obtained from our method for some specific parameters. Furthermore, we talk about MDS recursive diffusion layers with our method and extend the corresponding work of M. Sajadieh et al. published on FSE 2012 and the work of S. Wu published on SAC 2012.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives

Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...

متن کامل

Recursive Diffusion Layers for Block Ciphers and Hash Functions

Many modern block ciphers use maximum distance separable (MDS) matrices as the main part of their diffusion layers. In this paper, we propose a new class of diffusion layers constructed from several rounds of Feistel-like structures whose round functions are linear. We investigate the requirements of the underlying linear functions to achieve the maximal branch number for the proposed 4×4 words...

متن کامل

Lightweight Diffusion Layer: Importance of Toeplitz Matrices

MDS matrices are used as building blocks of diffusion layers in block ciphers, and XOR count is a metric that estimates the hardware implementation cost. In this paper we report the minimum value of XOR counts of 4 × 4 MDS matrices over F24 and F28 , respectively. We give theoretical constructions of Toeplitz MDS matrices and show that they achieve the minimum XOR count. We also prove that Toep...

متن کامل

Analysis and design of block cipher constructions

This thesis is dedicated to symmetric cryptographic algorithms. The major focus of the work is on block ciphers themselves as well as on hash functions and message authentication codes based on block ciphers. Three main approaches to the cryptanalysis of symmetric cryptographic algorithms are pursued. First, several block cipher constructions are analyzed mathematically using statistical crypta...

متن کامل

Dynamic MDS Matrices for Substantial Cryptographic Strength

Ciphers get their strength from the mathematical functions of confusion and diffusion, also known as substitution and permutation. These were the basics of classical cryptography and they are still the basic part of modern ciphers. In block ciphers diffusion is achieved by the use of Maximum Distance Separable (MDS) matrices. In this paper we present some methods for constructing dynamic (and r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015