Monitoring solid oxide CO2 capture sorbents in action.
نویسندگان
چکیده
The separation, capture, and storage of CO2 , the major greenhouse gas, from industrial gas streams has received considerable attention in recent years because of concerns about environmental effects of increasing CO2 concentration in the atmosphere. An emerging area of research utilizes reversible CO2 sorbents to increase conversion and rate of forward reactions for equilibrium-controlled reactions (sorption-enhanced reactions). Little fundamental information, however, is known about the nature of the sorbent surface sites, sorbent surface-CO2 complexes, and the CO2 adsorption/desorption mechanisms. The present study directly spectroscopically monitors Na2 O/Al2 O3 sorbent-CO2 surface complexes during adsorption/desorption with simultaneous analysis of desorbed CO2 gas, allowing establishment of molecular level structure-sorption relationships between individual surface carbonate complexes and the CO2 working capacity of sorbents at different temperatures.
منابع مشابه
Application of Thermogravimetric Analysis to the Evaluation of Aminated Solid Sorbents for Co2 Capture
In this work a series of solid sorbents were synthesized by immobilizing liquid amines on the surface of a mesoporous alumina. The samples were chemically characterized and BET surface areas calculated from the N2 adsorption isotherms at 77 K. The CO2 capture performance of the sorbents and their thermal stability was studied by thermogravimetric methods. The effect of amine loading on the CO2 ...
متن کاملPromoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.
Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO so...
متن کاملNitrogen enriched solid sorbents for CO2 capture
Reducing anthropogenic CO2 emissions to slow down the consequences of climate change concerns all developed countries. In the short term, one of the most viable options to cut down carbon emissions consists on CO2 capture and storage from large stationary sources such as power stations, cement plants, refineries, etc. The near-ready-to-use technology at this scale is amine scrubbing. However, i...
متن کاملEfficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications
By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of allowing identification of thermod...
متن کاملInnovative nano-layered solid sorbents for CO2 capture.
Nano-layered sorbents for CO(2) capture, for the first time, were developed using layer-by-layer nanoassembly. A CO(2)-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO(2) adsorption and desorption properties and their CO(2) capture capacity increased with increasing nano-layers of the CO(2)-adsorbing polymer.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ChemSusChem
دوره 7 12 شماره
صفحات -
تاریخ انتشار 2014