On the Symmetric Formulation of Interior-point Methods

نویسندگان

  • ROBERT J. VANDERBEI
  • BING YANG
چکیده

We present a uni ed framework for studying interior point methods for linear programming. Within this framework, we compare three fundamental methods: (1) pathfollowing, (2) barrier, and (3) primal/dual a ne-scaling (our terminology di ers slightly from the commonly accepted terminology). The step directions for each of these methods are linear combinations of three fundamental directions: (1) step-toward-optimality, (2) step-toward-center, and (3) step-toward-feasibilty. By making very simple modi cations to LOQO, we have created e cient implementations of each of these methods, which we compared one to another. We shall present the results of this comparison. In addition, associated with each of the three fundamental algorithms, there are three choices for how to organize the system of equations that must be solved: (1) general ordering heuristics applied to the KKT system, (2) primal-scaling, and (3) dual-scaling. Each of these three choices produce identical step directions but the choice can have a dramatic e ect on the e ciency of the implementation. Again, by making minor modi cations, we have created variants of the path-following method corresponding to each of these approaches to computing the step directions. We shall also present the results of this comparison.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs

An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...

متن کامل

An improved infeasible‎ ‎interior-point method for symmetric cone linear complementarity‎ ‎problem

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...

متن کامل

A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity

In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

The practical behavior of the homogeneous self-dual formulations in interior point methods

Interior point methods proved to be efficient and robust tools for solving large–scale optimization problems. The standard infeasible–start implementations scope very well with wide variety of problem classes, their only serious drawback is that they detect primal or dual infeasibility by divergence and not by convergence. As an alternative, approaches based on skew–symmetric and self–dual refo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994