Regulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase MEC-17-dependent acetylation of α-tubulin.

نویسندگان

  • Wulin Yang
  • Xiangxiang Guo
  • Shermaine Thein
  • Feng Xu
  • Shigeki Sugii
  • Peter W Baas
  • George K Radda
  • Weiping Han
چکیده

Cytoskeleton remodelling is a prerequisite step for the morphological transition from preadipocytes to mature adipocytes. Although microtubules play a pivotal role in organizing cellular structure, regulation of microtubule dynamics during adipogenesis remains unclear. In the present paper we show that acetylation of α-tubulin is up-regulated during adipogenesis, and adipocyte development is dependent on α-tubulin acetylation, as expression of an acetylation-resistant α-tubulin mutant significantly inhibits adipogenesis. Moreover, acetylation of α-tubulin is under the control of the acetyltransferase MEC-17 and deacetylases SIRT2 (Sirtuin 2) and HDAC6 (histone deacetylase 6). Adipocyte development is inhibited in MEC-17-knockdown cells, but enhanced in MEC-17-overexpressing cells. Finally, we show that katanin, a microtubule-severing protein with enhanced activity on acetylated α-tubulin, is actively involved in adipogenesis. We propose that co-ordinated up-regulation of α-tubulin acetylation initiates cytoskeleton remodelling by promoting α-tubulin severing by katanin which, in turn, allows expansion of lipid droplets and accelerates the morphological transition toward mature adipocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons.

Neuronal migration is a fundamental process during the development of the cerebral cortex and is regulated by cytoskeletal components. Microtubule dynamics can be modulated by posttranslational modifications to tubulin subunits. Acetylation of α-tubulin at lysine 40 is important in regulating microtubule properties, and this process is controlled by acetyltransferase and deacetylase. MEC-17 is ...

متن کامل

Structural and functional characterization of the α-tubulin acetyltransferase MEC-17.

Tubulin protomers undergo an extensive array of post-translational modifications to tailor microtubules to specific tasks. One such modification, the acetylation of lysine 40 of α-tubulin, located in the lumen of microtubules, is associated with stable, long-living microtubule structures. MEC-17 was recently identified as the acetyltransferase that mediates this event. We have determined the cr...

متن کامل

Posttranslational Acetylation of α-Tubulin Constrains Protofilament Number in Native Microtubules

BACKGROUND Microtubules are built from linear polymers of α-β tubulin dimers (protofilaments) that form a tubular quinary structure. Microtubules assembled from purified tubulin in vitro contain between 10 and 16 protofilaments; however, such structural polymorphisms are not found in cells. This discrepancy implies that factors other than tubulin constrain microtubule protofilament number, but ...

متن کامل

I-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation

Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase Sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 449 3  شماره 

صفحات  -

تاریخ انتشار 2013