Almost - Interpolatory Chebyshev Quadrature
نویسنده
چکیده
The requirement that a Chebyshev quadrature formula have distinct real nodes is not always compatible with the requirement that the degree of precision of an npoint formula be at least equal to n. This condition may be expressed as | \d\ \p = 0, 1 g p, where d (dx, ■ ■ ■ , d„) with Mo(w) ~ , -IT dj = 2w A iM ; = 1, 2, • • ■ , z!, ZJ ,_, Pj(io), j = 0, 1, • • • , are the moments of the weight function u used in the quadrature, and xi, ■ ■ ■ , x„ are the nodes. In those cases when | \d\ \i does not vanish for a real choice of nodes, it has been proposed that a real minimizer of | \d\ |2 be used to supply the nodes. It is shown in this paper that, in such cases, minimizers of ||rf||,,, 1 â P < <=, always lead to formulae that are degenerate in the sense that the nodes are not all distinct. The results are valid for a large class of weight functions.
منابع مشابه
Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions
We evaluate explicitly the integrals ∫ 1 −1 πn(t)/(r ∓ t)dt, |r| = 1, with the πn being any one of the four Chebyshev polynomials of degree n. These integrals are subsequently used in order to obtain error bounds for interpolatory quadrature formulae with Chebyshev abscissae, when the function to be integrated is analytic in a domain containing [−1, 1] in its interior.
متن کاملA generalized Birkhoff-Young-Chebyshev quadrature formula for analytic functions
A generalized N-point Birkhoff–Young quadrature of interpolatory type, with the Chebyshev weight, for numerical integration of analytic functions is considered. The nodes of such a quadrature are characterized by an orthogonality relation. Some special cases of this quadrature formula are derived. 2011 Elsevier Inc. All rights reserved.
متن کاملChebyshev series method for computing weighted quadrature formulas
In this paper we study convergence and computation of interpolatory quadrature formulas with respect to a wide variety of weight functions. The main goal is to evaluate accurately a definite integral, whose mass is highly concentrated near some points. The numerical implementation of this approach is based on the calculation of Chebyshev series and some integration formulas which are exact for ...
متن کاملComputing rational Gauss-Chebyshev quadrature formulas with complex poles
We provide a fast algorithm to compute arbitrarily many nodes and weights for rational Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary complex poles outside [−1, 1]. This algorithm is based on the derivation of explicit expressions for the Chebyshev (para-)orthogonal rational functions.
متن کاملOn the unbounded divergence of interpolatory product quadrature rules on Jacobi nodes
This paper is devoted to prove the unbounded divergence on superdense sets, with respect to product quadrature formulas of interpolatory type on Jacobi nodes. Mathematics Subject Classification (2010): 41A10, 41A55, 65D32.
متن کامل