Gaussian limits for vector-valued multiple stochastic integrals

نویسندگان

  • Giovanni PECCATI
  • Ciprian A. TUDOR
چکیده

We establish necessary and sufficient conditions for a sequence of d-dimensional vectors of multiple stochastic integrals Fd = ` F k 1 , ..., F k d ́ , k ≥ 1, to converge in distribution to a d-dimensional Gaussian vector Nd = (N1, ..., Nd). In particular, we show that if the covariance structure of F k d converges to that of Nd, then componentwise convergence implies joint convergence. These results extend to the multidimensional case the main theorem of [9].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Gaussian approximation of vector-valued multiple integrals

By combining the ndings of two recent, seminal papers by Nualart, Peccati and Tudor, we get that the convergence in law of any sequence of vector-valued multiple integrals Fn towards a centered Gaussian random vector N , with given covariance matrix C, is reduced to just the convergence of: (i) the fourth cumulant of each component of Fn to zero; (ii) the covariance matrix of Fn to C. The aim o...

متن کامل

Malliavin Calculus and Decoupling Inequalities in Banach Spaces

We develop a theory of Malliavin calculus for Banach space valued random variables. Using radonifying operators instead of symmetric tensor products we extend the Wiener-Itô isometry to Banach spaces. In the white noise case we obtain two sided L-estimates for multiple stochastic integrals in arbitrary Banach spaces. It is shown that the Malliavin derivative is bounded on vector-valued Wiener-I...

متن کامل

Vector-valued integrals

Quasi-complete, locally convex topological vector spaces V have the useful property that continuous compactly-supported V -valued functions have integrals with respect to finite Borel measures. Rather than constructing integrals as limits following [Bochner 1935], [Birkhoff 1935], et alia, we use the [Gelfand 1936][Pettis 1938] characterization of integrals, which has good functorial properties...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Electron. J. Probab. 18 (2013), no. 100, DOI: 10.1214/EJP.v18-2945

We prove new upper and lower bounds for Banach space-valued stochastic integrals with respect to a compensated Poisson random measure. Our estimates apply to Banach spaces with non-trivial martingale (co)type and extend various results in the literature. We also develop a Malliavin framework to interpret Poisson stochastic integrals as vector-valued Skorohod integrals, and prove a Clark-Ocone r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003